Câu hỏi:

03/03/2025 2,404

Bảng thống kê sau cho biết số lượt mượn các loại sách trong một tuần tại thư viện của một trường Trung học cơ sở như sau:

Loại sách

Sách giáo khoa

Sách tham khảo

Truyện ngắn

Tiểu thuyết

Số lượt

20

80

70

30

Từ bảng thống kê, tần số tương đối về số lượng sách giáo khoa được mượn là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Tần số tương đối về số lượng sách giáo khoa được mượn là:

\(\frac{{20}}{{20 + 80 + 70 + 30}} = \frac{{20}}{{200}} = 0,1 = 10\% \).

Do đó ta chọn phương án A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án: a) Đúng.b) Sai.c) Đúng.d) Sai.

⦁ Thể tích hình cầu có bán kính đáy \(R\), được tính bằng công thức: \(V = \frac{4}{3}\pi {R^3}.\)

Do đó ý a) là đúng.

⦁ Phần gạo nằm ngang mặt thúng trở xuống có dạng nửa hình cầu có bán kính \[\frac{{50}}{2} = 25\,\,\left( {{\rm{cm}}} \right).\] Do đó ý b) là sai.

⦁ Phần gạo nằm ngang mặt thúng trở xuống có dạng nửa hình cầu có bán kính \(25\,\,{\rm{cm}}\) có thể tích là \({V_1} = \frac{1}{2} \cdot \frac{4}{3}\pi \cdot {25^3} = \frac{{31\,\,250}}{3}\pi \,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\).

Phần gạo nằm trên miệng thúng có dạng hình nón có chiều cao \(15cm\) và bán kính đáy \(\frac{{50}}{2} = 25\,\,\left( {{\rm{cm}}} \right)\) có thể tích là \({V_2} = \frac{1}{3} \cdot 15 \cdot \pi \cdot {25^2} = 3\,\,125\pi \,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\).

Khi đó thể tích gạo trong thúng là \(V = {V_1} + {V_2} = \frac{{31\,\,250}}{3}\pi + 3\,\,125\pi = \frac{{60\,\,625}}{3}\pi \,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\).

Do đó ý c) là đúng.

⦁ Thể tích lon là \(V = \pi \cdot {5^2} \cdot 15 = 375\pi \,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\).

Vì lượng gạo chiếm \[90\% \] thể tích lon nên thể tích gạo trong mỗi lần lấy là:

\(375\pi \cdot 90\% = 337,5\pi \,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right).\)

Khi đó mỗi ngày nhà Danh ăn hết số gạo có thể tích là: \(337,5\pi \cdot 5 = 1687,5\pi \,\,\left( {c{m^3}} \right).\)

Vậy với số gạo ở thúng trên thì nhà Danh ăn được số ngày là: \(\frac{{\frac{{60\,\,625}}{3}\pi }}{{1687,5\pi }} \approx 12\) (ngày).

Do đó ý d) là sai.

Lời giải

Hướng dẫn giải

Cho đường tròn   ( O ; R )   và đường thẳng   d   không đi qua   O   cắt đường tròn tại hai điểm   A , B  . Lấy một điểm   M   trên tia đối của tia   B A   kẻ hai tiếp tuyến   M C , M D   với đường tròn   ( C , D   là hai tiếp điểm). Gọi   H   là trung điểm của   A B .    a) Chứng minh rằng   M , D , O , H   cùng nằm trên một đường tròn. (ảnh 1)

a) Vì \(MC,\,\,MD\) là tiếp tuyến của \(\left( {O\,;\,\,R} \right)\) \(\left( {C,\,\,\,D} \right.\) là hai tiếp điểm) nên \(MC \bot OC,\,\)\(\,MD \bot OD.\)

Suy ra \(\widehat {OCM} = \widehat {ODM} = 90^\circ \) nên \(C,\,\,D\) thuộc đường tròn đường kính \(OM\).

Vì \(H\) là trung điểm của \(AB\) và \(AB\) là dây của \(\left( {O\,;\,\,R} \right)\) nên \(OH \bot AB\).

Suy ra \(\widehat {OHM} = 90^\circ \) nên \(H\) thuộc đường tròn đường kính \(OM\).

Vậy \(M,\,\,D,\,\,O,\,\,H\) cùng nằm trên đường tròn đường kính \(OM\).

b) Vì \(MC,\,\,MD\) là tiếp tuyến của \(\left( {O\,;\,\,R} \right)\)\(\left( {C,\,\,\,D} \right.\) là hai tiếp điểm) nên \(MO\) là tia phân giác của \(\widehat {CMD}\) và \(OM\) là tia phân giác của \(\widehat {COD}.\)

Mặt khác, \(\widehat {MCI} = \widehat {CDI}\) (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn ).

và \(\widehat {CDI} = \widehat {DCI}\) (tam giác \(CDI\) cân tại \[I\,)\].

Suy ra \[\widehat {MCI} = \widehat {DCI}\] nên \[CI\] là tia phân giác của \(\widehat {MCD}\).

Ta có \(I\) là giao điểm hai đường phân giác trong của tam giác \(MCD\) nên \(I\) là tâm đường tròn nội tiếp tam giác \(MCD.\)

c) Ta có \({S_{MPQ}} = 2{S_{MPO}} = MP \cdot OC = \left( {MC + CP} \right) \cdot R\).

Mà \(MC + CP \ge 2\sqrt {MC.CP} = 2\sqrt {O{C^2}} = 2R\) nên \({S_{MPQ}} \ge 2{R^2}\).

Dấu xảy ra khi \(MC = CP = R\) hay \(OM = R\sqrt 2 \).

Vậy để diện tích tam giác \(MPQ\) nhỏ nhất thì \(M\) là giao điểm của \(\left( {O\,;\,\,R\sqrt 2 } \right)\) và đường thẳng \(d.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay