Câu hỏi:
10/03/2025 397Trong bản vẽ thiết kế (hình bên dưới), vòm của ô thoáng là nửa nằm phía trên trục hoành của elip có \({A_1}{A_2} = 180{\rm{cm}}\), \(O{B_1} = 60\) cm. Biết rằng 1 đơn vị trên mặt phẳng tọa độ của bản vẽ thiết kế ứng với 30 cm trên thực tế. Tính chiều cao \(h\) của ô thoáng tại điểm cách điểm chính giữa \(O\) của đế ô thoáng \(60\)cm.
Quảng cáo
Trả lời:
Hướng dẫn giải
Trong mặt phẳng \(\left( {Oxy} \right)\). Giả sử phương trình chính tắc của elip \(\left( E \right)\) là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\).
Vì \(\left( E \right)\) đi qua \({A_2}\left( {3;0} \right),{B_1}\left( {0;2} \right)\) nên ta có \(\left\{ \begin{array}{l}\frac{9}{{{a^2}}} = 1\\\frac{4}{{{b^2}}} = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{a^2} = 9\\{b^2} = 4\end{array} \right.\).
Vậy \(\left( E \right):\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\).
Tại điểm cách điểm chính giữa \(O\) của đế ô thoáng \(60\)cm tương ứng với 2 đơn vị trên mặt phẳng tọa độ.
Suy ra chiều cao của ô thoáng là \(\frac{{{2^2}}}{9} + \frac{{{h^2}}}{4} = 1\)\( \Rightarrow h = \frac{{2\sqrt 5 }}{3}\) tương ứng với \(20\sqrt 5 \) cm trên thực tế.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Đ, b) S, c) S, d) Đ
a) \(n\left( \Omega \right) = 6.6 = 36\).
b) Có \(A = \left\{ {\left( {1;1} \right);\left( {2;2} \right);\left( {3;3} \right);\left( {4;4} \right);\left( {5;5} \right);\left( {6;6} \right)} \right\}\). Suy ra \(n\left( A \right) = 6\).
c) Gọi biến cố \(\overline B \): “Không xuất hiện mặt 6 chấm”.
Ta có \(n\left( {\overline B } \right) = 5.5 = 25\). Suy ra \(P\left( {\overline B } \right) = \frac{{25}}{{36}}\).
Do đó \(P\left( B \right) = 1 - P\left( {\overline B } \right) = \frac{{11}}{{36}}\).
d) Ta có \(C = \left\{ {\left( {1;3} \right);\left( {2;4} \right);\left( {3;5} \right);\left( {4;6} \right);\left( {6;4} \right);\left( {5;3} \right);\left( {4;2} \right);\left( {3;1} \right)} \right\}\).
Suy ra \(n\left( C \right) = 8\). Do đó \(P\left( C \right) = \frac{8}{{36}} = \frac{2}{9}\).
Lời giải
Hướng dẫn giải
Trả lời: 750
Gọi số tự nhiên gồm 4 chữ số là \(\overline {abcd} \).
Th1: \(d = 0\).
\(d:\) có 1 cách chọn.
\(a,b,c:\) có \(A_7^3 = 210\). Do đó trong trường hợp này lập được 210 số.
Th2: \(d \in \left\{ {2;4;6} \right\}\).
\(d\): có 3 cách chọn.
\(a:\) có 6 cách chọn.
\(b,c:\) có \(A_6^2\).
Do đó trong trường hợp này có \(3.6.A_6^2 = 540\) số.
Vậy có tất cả \(210 + 540 = 750\) số.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
50 câu trắc nghiệm Thống kê cơ bản (phần 1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận