Câu hỏi:

19/08/2025 81 Lưu

Một lớp học có 40 học sinh trong đó có 30 học sinh giỏi toán, 25 học sinh giỏi giỏi tiếng việt, 2 học sinh không giỏi môn nào. Hỏi lớp đó có bao nhiêu học sinh giỏi cả toán và tiếng việt?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Số học sinh học giỏi ít nhất 1 môn toán hoặc tiếng việt là:

40 - 2 = 38 (học sinh)

Nếu mỗi bạn chỉ thích 1 môn thì có tất cả số học sinh là:

30 + 25 = 55 (học sinh)

Vậy thì thừa ra số học sinh chính là số học sinh giỏi cả toán và tiếng việt là:

55 - 38 = 17 (học sinh)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Trong toán học, tham số là các giá trị có thể giữ nguyên hoặc thay đổi trong các công thức và hàm số, ảnh hưởng đến cách mà các biến tương tác và kết quả của các phép toán. Chúng cho phép chúng ta điều chỉnh và nghiên cứu các hình dạng và đặc điểm của các biểu thức toán học.

Ví dụ, xét phương trình đường thẳng y = mx + b:

  • m là tham số xác định độ nghiêng của đường thẳng, biểu thị mức độ thay đổi của y khi x thay đổi. Giá trị của m quyết định độ dốc và hướng của đường thẳng.
  • b là tham số thể hiện điểm giao của đường thẳng với trục tung (trục y). Giá trị của b xác định vị trí mà đường thẳng cắt trục y, tức là giá trị của y khi x=0

Khi thay đổi giá trị của m và b, hình dạng và vị trí của đường thẳng sẽ thay đổi theo, tạo ra nhiều khả năng khác nhau.

Lời giải

Gọi chu kỳ sản xuất là x ngày, x *

Gọi số đơn vị nguyên liệu cần mua một lần là x đơn vị, x > 0

Chi phí lưu trữ x đơn vị nguyên liệu mỗi ngày là 10x (USD)

Chi phí trung bình hằng ngày là: \(C = \frac{{5000 + 10xn}}{n}\)

Do xưởng sản xuất 5 chiếc bàn mỗi ngày: \(\frac{x}{n} = 5 \Rightarrow x = 5n\)

Ta có: \(C = \frac{{5000 + 10xn}}{n} = \frac{{5000}}{n} + 10x\)

\(C = \frac{{5000}}{n} + 10.5n = \frac{{5000}}{n} + 50n \ge 2\sqrt {\frac{{5000}}{n}.50n} = 1000\)

Dấu “=” xảy ra khi \(\frac{{5000}}{n} = 50n \Rightarrow n = 100\)

Vậy cần đặt 5.100 = 500 đơn vị nguyên liệu sau mỗi 100 ngày để chi phí trung bình hằng ngày là ít nhất.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP