Câu hỏi:

14/03/2025 52

Cho x + y + z = 1. Chứng minh giá trị biểu thức sau không phụ thuộc vào giá trị của biến, P=x+y2xy+z.y+z2yz+x.x+z2zx+y

Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: x + y + z = 1 nên \(\left\{ \begin{array}{l}x = 1 - y - z\\y = 1 - z - x\\z = 1 - x - y\end{array} \right.\) và \(\left\{ \begin{array}{l}x + y = 1 - z\\y + z = 1 - x\\z + x = 1 - y\end{array} \right.\)

\(P = \frac{{{{\left( {x + y} \right)}^2}}}{{xy + z}}.\frac{{{{\left( {y + z} \right)}^2}}}{{yz + x}}.\frac{{{{\left( {x + z} \right)}^2}}}{{zx + y}}\)

\(P = \frac{{{{\left( {x + y} \right)}^2}}}{{xy + 1 - x - y}}.\frac{{{{\left( {y + z} \right)}^2}}}{{yz + 1 - y - z}}.\frac{{{{\left( {x + z} \right)}^2}}}{{zx + 1 - z - x}}\)

\(P = \frac{{{{\left( {x + y} \right)}^2}}}{{\left( {y - 1} \right)\left( {x - 1} \right)}}.\frac{{{{\left( {y + z} \right)}^2}}}{{\left( {y - 1} \right)\left( {z - 1} \right)}}.\frac{{{{\left( {x + z} \right)}^2}}}{{\left( {z - 1} \right)\left( {x - 1} \right)}}\)

\(P = \frac{{{{\left( {x + y} \right)}^2}{{\left( {y + z} \right)}^2}{{\left( {z + x} \right)}^2}}}{{{{\left[ {\left( {x - 1} \right)\left( {y - 1} \right)\left( {z - 1} \right)} \right]}^2}}}\)

\[P = \frac{{{{\left( {z - 1} \right)}^2}{{\left( {x - 1} \right)}^2}{{\left( {y - 1} \right)}^2}}}{{{{\left[ {\left( {x - 1} \right)\left( {y - 1} \right)\left( {z - 1} \right)} \right]}^2}}}\]

P = 1

Vậy giá trị biểu thức P không phụ thuộc vào giá trị của biến.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tung độ là gì? Hoành độ là gì? (trong hàm số bậc nhất)

Xem đáp án » 14/03/2025 4,477

Câu 2:

Tham số là gì?

Xem đáp án » 13/03/2025 964

Câu 3:

Giá trị nguyên là gì?

Xem đáp án » 14/03/2025 792

Câu 4:

Số 0 có phải là số tự nhiên không?

Xem đáp án » 13/03/2025 519

Câu 5:

1 giờ 10 phút bằng bao nhiêu giờ?      

Xem đáp án » 13/03/2025 441

Câu 6:

Số tập con có 3 phần tử của tập {21;22;...;22020} sao cho ba phần tử đó có thể xếp thành 1 cấp số nhân tăng bằng?

Xem đáp án » 13/03/2025 419

Câu 7:

So sánh A=102024+1102023+1 và B=102023+1102022+1

Xem đáp án » 13/03/2025 418
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua