Câu hỏi:

14/03/2025 32

Chứng minh rằng nếu x, y là hai số nguyên dương thoả mãn x² + 4xy - 8y²- 4y + 1= 0 thì 2y - x là số chính phương

Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

x² + 4xy - 8y²- 4y + 1= 0

x2 + 4xy – 12y2 + 4y2 – 4y + 1 = 0

(x – 2y)(x + 6y) + (2y – 1)2 = 0

(2y – x)(x + 6y) = (2y – 1)2

Đặt d = ƯCLN(2y – x; x + 6y)

Suy ra: \[\left\{ \begin{array}{l}2y - x \vdots d\\x + 6y \vdots d\end{array} \right. \Rightarrow \left( {2y - x} \right) + \left( {x + 6y} \right) \vdots d \Rightarrow 8y \vdots d\left( 1 \right)\]

Mà (2y – 1)2 = (2y – x)(x + 6y) d2

Suy ra: 2y – 1\[ \vdots d\] (2)

Từ (1) và (2) suy ra: d = 1

Tức là 2y – x và x + 6y nguyên tố cùng nhau mà tích của 2 số là số chính phương

Nên 2y - x và x + 6y là số chính phương

Vậy 2y - x là số chính phương

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tung độ là gì? Hoành độ là gì? (trong hàm số bậc nhất)

Xem đáp án » 14/03/2025 4,474

Câu 2:

Tham số là gì?

Xem đáp án » 13/03/2025 964

Câu 3:

Giá trị nguyên là gì?

Xem đáp án » 14/03/2025 792

Câu 4:

Số 0 có phải là số tự nhiên không?

Xem đáp án » 13/03/2025 519

Câu 5:

1 giờ 10 phút bằng bao nhiêu giờ?      

Xem đáp án » 13/03/2025 441

Câu 6:

Số tập con có 3 phần tử của tập {21;22;...;22020} sao cho ba phần tử đó có thể xếp thành 1 cấp số nhân tăng bằng?

Xem đáp án » 13/03/2025 419

Câu 7:

So sánh A=102024+1102023+1 và B=102023+1102022+1

Xem đáp án » 13/03/2025 418
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua