Cho \(\Delta ABC\) vuông tại \(C\) có \(\widehat A = 60^\circ .\) Trên cạnh \(AB\) lấy điểm \(K\) sao cho \(AK = AC\). Từ \(K\) kẻ đường thẳng vuông góc với \(AB\), cắt \(BC\) tại \(E.\)
a) \(\Delta ACE = \Delta AEK\).
Cho \(\Delta ABC\) vuông tại \(C\) có \(\widehat A = 60^\circ .\) Trên cạnh \(AB\) lấy điểm \(K\) sao cho \(AK = AC\). Từ \(K\) kẻ đường thẳng vuông góc với \(AB\), cắt \(BC\) tại \(E.\)
a) \(\Delta ACE = \Delta AEK\).
Quảng cáo
Trả lời:
Sai

Xét \(\Delta ACE\) và \(\Delta AEK\), ta có:
\(\widehat {ACE} = \widehat {AKE} = 90^\circ \) (gt)
\(CA = AK\) (gt)
\(AE\) chung (gt)
Do đó, \(\Delta ACE = \Delta AKE\) (ch – cgv)
Câu hỏi cùng đoạn
Câu 2:
b) \(AE\) là phân giác của \(\widehat {CAB}\).
b) \(AE\) là phân giác của \(\widehat {CAB}\).
Đúng
Do \(\Delta ACE = \Delta AKE\) (ch – cgv) nên \(\widehat {CAE} = \widehat {KAE}\) (hai góc tương ứng).
Do đó, \(AE\) là phân giác của \(\widehat {CAB}\).
Câu 3:
c) \(EC > EB.\)
c) \(EC > EB.\)
Sai
Do \(\Delta ACE = \Delta AKE\) (ch – cgv) nên \(CE = EK\) (hai cạnh tương ứng).
Mà xét tam giác \(\Delta KEB\) vuông tại \(K\) nên \(BE > EK\).
Mà \(EK = EC\) nên \(EB > CE\).
Câu 4:
d) \(AB = 2AC.\)
d) \(AB = 2AC.\)
Đúng
Ta có \(\widehat {ABC} = 180^\circ - \left( {\widehat A + \widehat C} \right) = 180^\circ - \left( {90^\circ + 60^\circ } \right) = 30^\circ \).
Lại có \(AE\) là phân giác của \(\widehat {CAB}\) nên \(\widehat {EAK} = \frac{1}{2}\widehat {CAB} = 30^\circ \).
Suy ra \(\widehat {EAK} = \widehat {CBA} = 30^\circ \).
Do đó, tam giác \(AEB\) cân tại \(E\).
Có \(EK \bot AB\) nên \(EK\) là đường cao, đường trung trực trong tam giác \(EKB.\)
Do đó, \(K\) là trung điểm của \(AB\)
Suy ra \(AK = \frac{1}{2}AB\) hay \(AB = 2AK\).
Mà \(AK = AC\) nên \(AB = 2AC\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số trang được đánh số là các số chia hết cho 3 là: \(\left( {315 - 3} \right):3 + 1 = 105\) (số)
Do đó, xác suất của biến cố “trang sách bạn An mở được là một số chia hết cho 3” là: \(\frac{{105}}{{315}} = \frac{1}{3}\).
Lời giải
Đáp án: \(50\)
Gọi \(x\) là số mét vải loại II mua được (\(x > 0,\) mét)
Vì có cùng số tiền nên số mét vải mỗi loại mua được tỉ lệ nghịch với giá tiền 1 mét, ta có:
\(\frac{{60}}{x} = \frac{{120}}{{100}}\) suy ra \(x = \frac{{60.100}}{{120}} = 50\) (thỏa mãn).
Vậy số mét vải loại II mua được là \(50{\rm{ m}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.