(0,5 điểm) Chọn ngẫu nhiên một số tự nhiên có hai chữ số. Tính xác suất để số được chọn chia hết cho \(5\) nhưng không chia hết cho \(2\).
(0,5 điểm) Chọn ngẫu nhiên một số tự nhiên có hai chữ số. Tính xác suất để số được chọn chia hết cho \(5\) nhưng không chia hết cho \(2\).
Quảng cáo
Trả lời:
Số các số có hai chữ số là: \(\left( {99 - 10} \right):1 + 1 = 90\) số
Các số có hai chữ số chia hết cho 5 nhưng không chia hết cho 2 là: \(15;25;35;45;55;65;75;85;95\).
Do đó, có 9 số có hai chữ số chia hết cho 5 nhưng không chia hết cho 2.
Vậy xác suất để chọn được số chia hết cho 5 nhưng không chia hết cho 2 là: \(\frac{9}{{90}} = \frac{1}{{10}}.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Văn, Sử, Địa, GDCD lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Toán, Anh, KHTN lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 7 (chương trình mới) ( 120.000₫ )
- Trọng tâm Toán - Văn - Anh, Toán - Anh - KHTN lớp 6 (chương trình mới) ( 126.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Ta có: \(12:a = b:5{\rm{ }}\left( {a,b \ne 0} \right)\) hay \(\frac{{12}}{a} = \frac{b}{5}\) hay \(ab = 5.12\).
Suy ra \(\frac{a}{b} = \frac{5}{{12}}\) là tỉ lệ thức sai.
Lời giải
Đáp án: \(0\)
Thực hiện phép chia \(\left( {2{x^4} + 4{x^3} - 3{x^2} - 4x + 1} \right):\left( {{x^2} - 1} \right) = 2{x^2} + 4x - 1\) và dư là \(0\).
Vậy số dư của phép chia trên là 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.