Câu hỏi:
12/04/2025 107Câu 9-11. Cho đường tròn \(\left( O \right)\), bán kính \(R\,\,\left( {R > 0} \right)\) và dây cung \(BC\) cố định. Một điểm \(A\) chuyển động trên cung lớn \(BC\) sao cho tam giác \(ABC\) có ba góc nhọn. Kẻ các đường cao \(AD,\,\,BE\) của tam giác \(ABC\) cắt nhau tại \(H\) và \(BE\) cắt đường tròn \(\left( O \right)\) tại ( F khác B)
a) Chứng minh rằng tứ giác \(DHEC\) nội tiếp.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k).
Quảng cáo
Trả lời:
a) Gọi \(O'\) là trung điểm của cạnh \[CH.\]
Ta có \(HD \bot CD\) nên \(\widehat {HDC} = 90^\circ \).
Xét \(\Delta HDC\)vuông tại \[D\] có \(DO'\) là trung tuyến nên \(DO' = HO' = CO' = \frac{1}{2}HC\).
Chứng ming tương tự, ta có
\(CO' = HO' = EO' = \frac{1}{2}HC\).
Do đó \(DO' = HO' = CO' = EO' = \frac{1}{2}HC\).Do đó, bốn điểm \(D,\,\,H,\,\,E,\,\,C\) cùng thuộc một đường tròn.
Vậy tứ giác \(DHEC\) nội tiếp đường tròn.
Câu hỏi cùng đoạn
Câu 2:
b) Kẻ đường kính \(AM\) của đường tròn \(\left( O \right)\) và \(OI\) vuông góc với \(BC\) tại \(I\). Chứng minh \(I\) là trung điểm của \(HM\) và tính \[AF\] biết \(BC = R\sqrt 3 .\)
Lời giải của GV VietJack
b) Trong tam giác \(ABC\) có \(BE,\,\,AD\) là hai đường cao cắt nhau tại \(H\).
Vì \(H\) là trực tâm tam giác \(ABC\) nên \(CH \bot AB\).
Trong \(\left( O \right)\) có \(\widehat {ABM},\,\,\widehat {ACM}\) là hai góc nội tiếp cùng chắn nửa đường tròn đường kính \(AM\)
Suy ra \(\widehat {ABM} = \widehat {ACM} = 90^\circ \) nên \(MB \bot AB\,;\,\,MC \bot AC.\)
Mà \(CH \bot AB\,;\,\,BH \bot AC\) nên \(MB\,{\rm{//}}\,CH,\,\,MC\,{\rm{//}}\,BH\) nên \(BHCM\) là hình bình hành.
Xét đường tròn \(\left( O \right)\) có \(OI \bot BC\) tại \(I\) nên \(I\) là trung điểm của \(BC\) (đường kính vuông góc với dây).
Câu 3:
c) Khi \(BC\) cố định, xác định vị trí của \(A\) trên đường tròn \(\left( O \right)\) để \(DH \cdot DA\) lớn nhất.
Lời giải của GV VietJack
c) Xét \(\Delta DHB\) và \(\Delta DCA\) có
\(\widehat {BDH} = \widehat {ADC} = 90^\circ \) (vì \(AD \bot BC\))
\(\widehat {HBD} = \widehat {DAC}\) (cùng phụ \(\widehat {ACB}\))
Do đó .
Suy ra \(\frac{{DH}}{{DC}} = \frac{{DB}}{{DA}}\) hay \(DH \cdot DA = DB \cdot DC.\)
Ta có \({\left( {a - b} \right)^2} \ge 0\) hay \({a^2} - 2ab + {b^2} \ge 0\) nên \({a^2} + 2ab + {b^2} \ge 4ab\), suy ra \(ab \le \frac{{{{\left( {a + b} \right)}^2}}}{4}\).
Áp dụng bất đẳng thức \(ab \le \frac{{{{\left( {a + b} \right)}^2}}}{4}\), ta có: \(DB \cdot DC \le \frac{{{{\left( {DB + DC} \right)}^2}}}{4} = \frac{{B{C^2}}}{4}\).
Suy ra \(DH \cdot DA \le \frac{{B{C^2}}}{4}\) không đổi vì \(BC\) cố định.
Dấu xảy ra khi \(DB = DC\), khi đó \(A\) là điểm chính giữa cung lớn .
Vậy \(A\) là điểm chính giữa cung lớn thì giá trị lớn nhất của \(DH \cdot DA\) bằng \(\frac{{B{C^2}}}{4}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
a) Tính thể tích hộp dựng bóng (bỏ qua bề dày của vỏ hộp, làm tròn kết quả đến hàng đơn vị của \({\rm{c}}{{\rm{m}}^3}\)).
Câu 2:
a) Xác định không gian mẫu và số kết quả có thể xảy ra của phép thử.
Câu 3:
2. Giải bài toán sau bằng cách lập phương trình:
Một người vay 20 triệu đồng ở ngân hàng thời hạn một năm phải trả cả vốn lẫn lãi. Song được ngân hàng tiếp tục cho vay thêm một năm nữa. Hết hai năm phải trả \(24\,\,200\,\,000\) đồng. Hỏi lãi suất cho vay là bao nhiêu phần trăm trong một năm?
Câu 6:
Vòng trong của mái giếng trời hình hoa sen của nhà ga Bến Thành (Thành phố Hồ Chí Minh) có dạng đa giác đều 12 cạnh (hình vẽ). Hãy chỉ ra bốn phép quay biến đa giác đều đó thành chính nó.
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 01
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 03
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 02
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận