Câu hỏi:
12/04/2025 246
Câu 6-7. (1,5 điểm) Hộp thứ nhất đựng 1 quả bóng trắng, 1 quả bóng đó. Hộp thứ 2 đựng 1 quả bóng đó, 1 quả bóng vàng. Lấy ra ngẫu nhiên từ mỗi hộp 1 quả bóng.
a) Xác định không gian mẫu và số kết quả có thể xảy ra của phép thử.
Câu 6-7. (1,5 điểm) Hộp thứ nhất đựng 1 quả bóng trắng, 1 quả bóng đó. Hộp thứ 2 đựng 1 quả bóng đó, 1 quả bóng vàng. Lấy ra ngẫu nhiên từ mỗi hộp 1 quả bóng.
a) Xác định không gian mẫu và số kết quả có thể xảy ra của phép thử.
Quảng cáo
Trả lời:
a) Kí hiểu \[T\] là màu trắng, là màu đỏ và \[V\] là màu vàng.
Không gian mẫu .
Số kết quả có thể xảy ra là \(n\left( \Omega \right) = 4\).
Câu hỏi cùng đoạn
Câu 2:
b) Biết rằng các quả bóng có cùng kích thước và khối lượng. Tính xác suất của mỗi biến cố sau:
A: “2 quả bóng lấy ra có cùng màu”.
B: “Có đúng 1 quả bóng màu đỏ trong 2 quả bóng lấy ra”.
b) Biết rằng các quả bóng có cùng kích thước và khối lượng. Tính xác suất của mỗi biến cố sau:
A: “2 quả bóng lấy ra có cùng màu”.
B: “Có đúng 1 quả bóng màu đỏ trong 2 quả bóng lấy ra”.
Lời giải của GV VietJack
b) Vì các quả bóng có cùng kích thước và khối lượng nên các kết quả trên có cùng khả năng xảy ra.
Có 1 kết quả thuận lợi cho biến cố \[A\] là .
Do đó, xác suất của biến cố \[A\] là \(P\left( A \right) = \frac{1}{4}\).
Có 2 kết quả thuận lợi cho biến cố \[B\] là .
Do đó, xác suất của biến cố B là \(P\left( B \right) = \frac{2}{4} = \frac{1}{2}\).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Gọi \(O'\) là trung điểm của cạnh \[CH.\]
Ta có \(HD \bot CD\) nên \(\widehat {HDC} = 90^\circ \).
Xét \(\Delta HDC\)vuông tại \[D\] có \(DO'\) là trung tuyến nên \(DO' = HO' = CO' = \frac{1}{2}HC\).
Chứng ming tương tự, ta có
\(CO' = HO' = EO' = \frac{1}{2}HC\).
Do đó \(DO' = HO' = CO' = EO' = \frac{1}{2}HC\).Do đó, bốn điểm \(D,\,\,H,\,\,E,\,\,C\) cùng thuộc một đường tròn.
Vậy tứ giác \(DHEC\) nội tiếp đường tròn.
Lời giải
2. Gọi \(x\,\,\left( {\rm{\% }} \right)\) là lãi suất trong một năm của ngân hàng \(\left( {x > 0} \right)\).
Sau năm thứ nhất người đó phải trả:
\(20\,\,000\,\,000 + 20\,\,000\,\,000 \cdot \frac{x}{{100}} = 200\,\,000\left( {100 + x} \right)\)
Số tiền sau năm thứ hai tăng thêm là:
\(200\,\,000\left( {100 + x} \right)\frac{x}{{100}} = 2\,\,000x\left( {x + 100} \right)\)
Theo bài ra, ta có phương trình:
\(200\,\,000\left( {100 + x} \right) + 2\,\,000x\left( {x + 100} \right) = 24\,\,200\,\,000\)
\(100\left( {100 + x} \right) + x\left( {x + 100} \right) = 12\,\,100\)
\({x^2} + 200x - 2\,\,100\,\,000 = 0\)
\(x = 10\) (TMĐK) hoặc \(x = - 210\) (loại).
Vậy lãi của ngân hàng một năm là \(10{\rm{\% }}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.