Câu hỏi:

12/04/2025 520

2. Giải bài toán sau bằng cách lập phương trình:

     Một người vay 20 triệu đồng ở ngân hàng thời hạn một năm phải trả cả vốn lẫn lãi. Song được ngân hàng tiếp tục cho vay thêm một năm nữa. Hết hai năm phải trả \(24\,\,200\,\,000\) đồng. Hỏi lãi suất cho vay là bao nhiêu phần trăm trong một năm?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

2. Gọi \(x\,\,\left( {\rm{\% }} \right)\) là lãi suất trong một năm của ngân hàng \(\left( {x > 0} \right)\).

Sau năm thứ nhất người đó phải trả:

 \(20\,\,000\,\,000 + 20\,\,000\,\,000 \cdot \frac{x}{{100}} = 200\,\,000\left( {100 + x} \right)\)

Số tiền sau năm thứ hai tăng thêm là:

\(200\,\,000\left( {100 + x} \right)\frac{x}{{100}} = 2\,\,000x\left( {x + 100} \right)\)

Theo bài ra, ta có phương trình:

\(200\,\,000\left( {100 + x} \right) + 2\,\,000x\left( {x + 100} \right) = 24\,\,200\,\,000\)

\(100\left( {100 + x} \right) + x\left( {x + 100} \right) = 12\,\,100\)

\({x^2} + 200x - 2\,\,100\,\,000 = 0\)

\(x = 10\) (TMĐK) hoặc \(x = - 210\) (loại).

Vậy lãi của ngân hàng một năm là \(10{\rm{\% }}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Chứng minh rằng tứ giác \(DHEC\) nội tiếp. (ảnh 1)

a) Gọi \(O'\) là trung điểm của cạnh \[CH.\]

Ta có \(HD \bot CD\) nên \(\widehat {HDC} = 90^\circ \).

Xét \(\Delta HDC\)vuông tại \[D\]\(DO'\) là trung tuyến nên \(DO' = HO' = CO' = \frac{1}{2}HC\).

Chứng ming tương tự, ta có

\(CO' = HO' = EO' = \frac{1}{2}HC\).

Do đó \(DO' = HO' = CO' = EO' = \frac{1}{2}HC\).

Do đó, bốn điểm \(D,\,\,H,\,\,E,\,\,C\) cùng thuộc một đường tròn.

Vậy tứ giác \(DHEC\) nội tiếp đường tròn.

Lời giải

a) Chiều cao hộp dựng bóng hình trụ là \(h = 6,4 \cdot 3 = 19,2\,\,(\;{\rm{cm}})\)

Bán kính đáy hộp đựng bóng hình trụ là \({R_1} = 6,4:2 = 3,2\,\,(\;{\rm{cm}})\).

Thể tích hộp đựng bóng hình trụ là:

\({V_1} = \pi rR_1^2\;h = \pi \cdot 3,{2^2} \cdot 19,2 = 618\,\,\left( {\;{\rm{c}}{{\rm{m}}^3}} \right)\).

Vậy thể tích hộp dựng bóng \(618\,\,{\rm{c}}{{\rm{m}}^3}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP