Câu hỏi:

19/08/2025 85 Lưu

Cho đường tròn \(\left( {O;R} \right)\). Lấy các điểm \[A,\,\,B,\,\,C,\,\,D,\,\,E,\,\,F\] trên đường tròn \(\left( {O;R} \right)\) sao cho số đo các cung bằng nhau. Đa giác \(ABCDEF\) có là đa giác đều không?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đa giác \(ABCDEF\) có là đa giác đều không? (ảnh 1)

Ta có sđ AB=sđ BC=sđ CD=sđ DE=sđ EF=sđ FA=360°6=60°.

Xét tam giác \(AOB\) cân tại \(O\) \(\widehat {AOB} = 60^\circ \) (vì

Vì tam giác \(AOB\) đều nên \(AB = R\) \(\widehat {ABO} = 60^\circ .\)

Tương tự với tam giác \({\rm{BOC}}\) đều nên \(\widehat {OBC} = 60^\circ \) \(BC = R.\)

Suy ra \(\widehat {ABC} = \widehat {ABO} + \widehat {OBC} = 60^\circ + 60^\circ = 120^\circ \) \(AB = BC = R\).

Chứng minh tương tự với các cạnh và các góc còn lại ta có đa giác \(ABCD\) có:

\(AB = BC = CD = DE = EF = FA = R.\;\)

Và các góc \(\widehat {ABC} = \widehat {BCD} = \widehat {CDE} = \widehat {DEF} = \widehat {EFA} = \widehat {FAB} = 120^\circ \).

Do đó \(ABCDEF\) là một đa giác đều.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi thời gian để vòi thứ nhất chảy đầy bể là \(x\) (giờ) \[\left( {x > 0} \right)\].

Khi đó, thời gian để vòi thứ hai chảy đầy bể \(x + 5\) (giờ).

Khi đó, mỗi giờ vòi thứ nhất chảy được \(\frac{1}{x}\) bể; vòi thứ hai chảy dược: \(\frac{1}{{x + 5}}\) bể và cả hai vòi chảy được \(\frac{1}{6}\) bể.

Theo đề bài, ta có phương trình: \(\frac{1}{x} + \frac{1}{{x + 5}} = \frac{1}{6}\)

\(\frac{{6\left( {x + 5} \right)}}{{6x\left( {x + 5} \right)}} + \frac{{6x}}{{6x\left( {x + 5} \right)}} = \frac{{x\left( {x + 5} \right)}}{{6x\left( {x + 5} \right)}}\)

\(6\left( {x + 5} \right) + 6x = x\left( {x + 5} \right)\)

\({x^2} - 7x - 30 = 0\)
\(x = 10\) (TMĐK) hoặc \(x = - 3\) (loại).

Vậy: Vòi thứ nhất chảy đầy bể trong 10 giờ.

Vòi thứ hai chảy đầy bế trong 15 giờ.

Lời giải

2. a) Vì \(CK \bot AK\) nên \(\widehat {AKC} = 90^\circ .\) Vì \(CH \bot AB\) tại \[H\] nên \(\widehat {AHC} = 90^\circ .\)

Gọi \(I\)là trung điểm \(AC\).

\(\Delta AKC\)\(KI\) là trung tuyến ứng với cạnh huyền \(AC\) nên \(KI = OA = OC = \frac{1}{2}AC.\)

\(\Delta AHC\)\(HI\) là trung tuyến ứng với cạnh huyền\(AC\) nên \(HI = IA = IC = \frac{1}{2}AC.\)

Do đó \(IA = IK = IC = IH.\)

Vậy bốn điểm \(A,\,\,H,\,\,C,\,\,K\) cùng nằm trên cùng một đường tròn tâm \(I\) hay tứ giác \[AHCK\] nội tiếp.
a) Chứng minh tứ giác \[AHCK\] là tứ giác nội tiếp. (ảnh 1)

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP