Câu hỏi:

12/04/2025 57

Cho đường tròn \(\left( {O;R} \right)\). Lấy các điểm \[A,\,\,B,\,\,C,\,\,D,\,\,E,\,\,F\] trên đường tròn \(\left( {O;R} \right)\) sao cho số đo các cung bằng nhau. Đa giác \(ABCDEF\) có là đa giác đều không?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đa giác \(ABCDEF\) có là đa giác đều không? (ảnh 1)

Ta có sđ AB=sđ BC=sđ CD=sđ DE=sđ EF=sđ FA=360°6=60°.

Xét tam giác \(AOB\) cân tại \(O\) \(\widehat {AOB} = 60^\circ \) (vì

Vì tam giác \(AOB\) đều nên \(AB = R\) \(\widehat {ABO} = 60^\circ .\)

Tương tự với tam giác \({\rm{BOC}}\) đều nên \(\widehat {OBC} = 60^\circ \) \(BC = R.\)

Suy ra \(\widehat {ABC} = \widehat {ABO} + \widehat {OBC} = 60^\circ + 60^\circ = 120^\circ \) \(AB = BC = R\).

Chứng minh tương tự với các cạnh và các góc còn lại ta có đa giác \(ABCD\) có:

\(AB = BC = CD = DE = EF = FA = R.\;\)

Và các góc \(\widehat {ABC} = \widehat {BCD} = \widehat {CDE} = \widehat {DEF} = \widehat {EFA} = \widehat {FAB} = 120^\circ \).

Do đó \(ABCDEF\) là một đa giác đều.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Thể tích nước trong cốc là:

\({V_1} = \pi {r^2}\;h = \pi \cdot {12^2} \cdot 10 = 1440\pi \,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right).\)

Vậy thể tích nước trong cốc là \(1440\pi \,\,{\rm{c}}{{\rm{m}}^{\rm{3}}}.\)

Lời giải

2. a) Vì \(CK \bot AK\) nên \(\widehat {AKC} = 90^\circ .\) Vì \(CH \bot AB\) tại \[H\] nên \(\widehat {AHC} = 90^\circ .\)

Gọi \(I\)là trung điểm \(AC\).

\(\Delta AKC\)\(KI\) là trung tuyến ứng với cạnh huyền \(AC\) nên \(KI = OA = OC = \frac{1}{2}AC.\)

\(\Delta AHC\)\(HI\) là trung tuyến ứng với cạnh huyền\(AC\) nên \(HI = IA = IC = \frac{1}{2}AC.\)

Do đó \(IA = IK = IC = IH.\)

Vậy bốn điểm \(A,\,\,H,\,\,C,\,\,K\) cùng nằm trên cùng một đường tròn tâm \(I\) hay tứ giác \[AHCK\] nội tiếp.
a) Chứng minh tứ giác \[AHCK\] là tứ giác nội tiếp. (ảnh 1)

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Tính hằng số \(a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay