Câu hỏi:

18/04/2025 79 Lưu

Tìm cực trị của hàm\[{\rm{z = }}{{\rm{x}}^{\rm{2}}}{\rm{ + 3}}{{\rm{y}}^{\rm{2}}}{\rm{ + x}} - {\rm{y}}\]với điều kiện x + y = 1. Khẳng định nào sau đây đúng?

A. z đạt CĐ tại\[{\rm{M}}\left( {\frac{1}{2},\frac{1}{2}} \right)\]

B. z đạt CTiểu tại B. z đạt CTiểu tại

C. z ko có cực trị

D. Các khẳng định trên sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[{\rm{y = }}{{\rm{C}}_{\rm{1}}}{{\rm{e}}^{ - {\rm{x}}}}{\rm{ + }}{{\rm{C}}_{\rm{2}}}{{\rm{e}}^{{\rm{3x}}}}\]

B. \[{\rm{y = }}{{\rm{C}}_{\rm{1}}}{{\rm{e}}^{\rm{x}}}{\rm{ + }}{{\rm{C}}_{\rm{2}}}{{\rm{e}}^{{\rm{3x}}}}\]

C. \[{\rm{y = }}{{\rm{C}}_{\rm{1}}}{{\rm{e}}^{ - {\rm{x}}}}{\rm{ + }}{{\rm{C}}_{\rm{2}}}{{\rm{e}}^{ - {\rm{3x}}}}\]

D. \[{\rm{y = }}{{\rm{C}}_{\rm{1}}}{{\rm{e}}^{{\rm{2x}}}}{\rm{ + }}{{\rm{C}}_{\rm{2}}}{{\rm{e}}^{{\rm{3x}}}}\]

Lời giải

Chọn đáp án B

Lời giải

Chọn đáp án A

Câu 3

A. \[{\rm{y = C}}\left( {\rm{x}} \right){\rm{sinx}}\]

B. \[{\rm{y = }}\frac{{{\rm{C(x)}}}}{{{\rm{sinx}}}}\]

C. \[{\rm{y = C(x) + sinx}}\]

D. \[{\rm{y = C(x)}} - {\rm{sinx}}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\frac{{\partial {\rm{z}}}}{{\partial {\rm{x}}}} = \frac{1}{{\sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} }}\]

B. \[\frac{{\partial {\rm{z}}}}{{\partial {\rm{x}}}} = \frac{{ - 1}}{{\sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} }}\]

C. \[\frac{{\partial {\rm{z}}}}{{\partial {\rm{x}}}} = \frac{{2x}}{{\sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} }}\]

D. \[\frac{{\partial {\rm{z}}}}{{\partial {\rm{x}}}} = \frac{x}{{\sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} }}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP