Câu hỏi:

21/04/2025 317

Câu 1-3. (1,5 điểm) Cho biểu thức P=x26x+99x2+4x+8x+3.

a) Tìm điều kiện xác định của biểu thức P.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Điều kiện xác định của biểu thức \(P\)\(9 - {x^2} \ne 0,\) \(x + 3 \ne 0\) hay \[x \ne 3,\,\,x \ne - 3\].

Vậy điều kiện xác định của biểu thức \(P\) là \[x \ne 3,\,\,x \ne - 3\].

Câu hỏi cùng đoạn

Câu 2:

b) Rút gọn biểu thức P.

Xem lời giải

verified Lời giải của GV VietJack

b) Với \[x \ne 3,\,\,x \ne - 3\], ta có:

\[P = \frac{{{x^2} - 6x + 9}}{{9 - {x^2}}} + \frac{{4x + 8}}{{x + 3}}\]

\[ = \frac{{{{\left( {x - 3} \right)}^2}}}{{\left( {3 - x} \right)\left( {x + 3} \right)}} + \frac{{4x + 8}}{{x + 3}}\]

\[ = \frac{{3 - x}}{{x + 3}} + \frac{{4x + 8}}{{x + 3}}\]

\[ = \frac{{3 - x + 4x + 8}}{{x + 3}} = \frac{{3x + 11}}{{x + 3}}\].

Vậy với \[x \ne 3,\,\,x \ne - 3\] thì \(P = \frac{{3x + 11}}{{x + 3}}.\)

Câu 3:

c) Tính giá trị của biểu thức \(P\) biết \(\left| {x + 2} \right| = 1\).

Xem lời giải

verified Lời giải của GV VietJack

c) Ta có \(\left| {x + 2} \right| = 1\) suy ra \(x + 2 = 1\) hoặc \(x + 2 = - 1\).

Do đó \(x = 1\) (thỏa mãn điều kiện) hoặc \(x = - 3\) (không thỏa mãn điều kiện).

Thay \(x = 1\) vào biểu thức \(P,\) ta được:

\(P = \frac{{3 \cdot 1 + 11}}{{1 + 3}} = \frac{{3 + 11}}{4} = \frac{7}{2}.\)

Vậy \(P = \frac{7}{2}\) khi \(\left| {x + 2} \right| = 1\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Tổng số sản phẩm loại A và loại B là \(10 + 7 = 17\) (sản phẩm).

Khi lấy ngẫu nhiên 2 sản phẩm:

Chọn sản phẩm thứ nhất chọn 1 trong 17 sản phẩm nên có 17 cách;

Chiếc sản phẩm thứ hai chọn \[1\] trong 16 sản phẩm còn lại nên có 16 cách.

Số cách chọn 2 sản phẩm trong số 17 sản phẩm là: \(\frac{{17.16}}{2} = 136\) (cách) (cứ mỗi cặp bị lặp lại 2 lần).

\(\frac{{10.9}}{2} = 45\) cách chọn chỉ lấy ra 2 sản phẩm loại A.

Số kết quả thuận lợi của biến cố E\[136--45 = 91.\]

Vậy xác suất của biến cố E\(\frac{{91}}{{136}}\).

Lời giải

a (ảnh 1)

a) Xét \[\Delta FHB\]\[\Delta EHC\] có:

\[\widehat {FHB} = \widehat {EHC}\]; \(\widehat {HFB} = \widehat {HEC}\;\left( { = 90^\circ } \right)\)

Do đó ΔFHB  ΔEHC (g.g).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay