Câu hỏi:

21/04/2025 132

Câu 12-13. (1,5 điểm)

Một chiếc thang có chiều dài \[AB = 3,7\,\,{\rm{m}}\] đặt cách một bức tường khoảng cách \[BH = 1,2\,\,{\rm{m}}.\] Biết rằng khoảng cách “an toàn” khi \(2,0 < \frac{{AH}}{{BH}} < 2,2\) (xem hình vẽ). Tính chiều cao \[AH.\] Từ đó kiểm tra xem khoảng cách đặt thang cách chân tường là \[BH\] có “an toàn” không?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Áp dụng định lí Pythagore vào tam giác \[ABH\] vuông tại \[H\], ta có:

\(A{B^2} = A{H^2} + B{H^2}\) suy ra \(A{H^2} = A{B^2} - B{H^2}\).

Do đó \(AH = \sqrt {A{B^2} - B{H^2}} = \sqrt {{{\left( {3,7} \right)}^2} - {{\left( {1,2} \right)}^2}} = 3,5\,\,(m)\).

Ta có \(\frac{{AH}}{{BH}} = \frac{{3,5}}{{1,2}} \approx 2,9\).

\[2,9 > 2,2\] nên khoảng cách đặt thang cách chân tường là không an toàn.

Câu hỏi cùng đoạn

Câu 2:

Một hộp quà có dạng là một hình chóp tứ giác đều có cạnh đáy bằng \(10\,\,{\rm{cm}}\), trung đoạn bằng \(13\,\,{\rm{cm}}\). Tính chiều cao của hộp quà.

Xem lời giải

verified Lời giải của GV VietJack

Tính chiều cao của hộp quà. (ảnh 1)

Ta có \(SE\) là trung đoạn nên \(E\) là trung điểm của \(AB\).

Xét \(\Delta ABD\)\(E,\,\,H\) lần lượt là trung điểm của \(AB,\,BD.\)

Suy ra \(EH\) là đường trung bình của \(\Delta ABD\) nên \(EH = \frac{1}{2}AD = 5\,\,({\rm{cm)}}\).

Áp dụng định lí Pythagore \(\Delta SEH\) vuông tại \(H\) có: \(S{E^2} = S{H^2} + E{H^2}\)

Suy ra \(S{H^2} = S{E^2} - E{H^2} = {13^2} - {5^2}\)

Do đó \(SH = 12\,\,{\rm{cm}}\).

Vậy chiều cao của hộp quà là 12 cm.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Tổng số sản phẩm loại A và loại B là \(10 + 7 = 17\) (sản phẩm).

Khi lấy ngẫu nhiên 2 sản phẩm:

Chọn sản phẩm thứ nhất chọn 1 trong 17 sản phẩm nên có 17 cách;

Chiếc sản phẩm thứ hai chọn \[1\] trong 16 sản phẩm còn lại nên có 16 cách.

Số cách chọn 2 sản phẩm trong số 17 sản phẩm là: \(\frac{{17.16}}{2} = 136\) (cách) (cứ mỗi cặp bị lặp lại 2 lần).

\(\frac{{10.9}}{2} = 45\) cách chọn chỉ lấy ra 2 sản phẩm loại A.

Số kết quả thuận lợi của biến cố E\[136--45 = 91.\]

Vậy xác suất của biến cố E\(\frac{{91}}{{136}}\).

Lời giải

a) Điều kiện xác định của biểu thức \(P\)\(9 - {x^2} \ne 0,\) \(x + 3 \ne 0\) hay \[x \ne 3,\,\,x \ne - 3\].

Vậy điều kiện xác định của biểu thức \(P\) là \[x \ne 3,\,\,x \ne - 3\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay