(0,5 điểm) Một lô hàng gồm 10 sản phẩm loại A và 7 sản phẩm loại B. Lấy ngẫu nhiên 2 sản phẩm. Tính xác suất của biến cố E: “2 sản phẩm lấy ra có ít nhất một sản phẩm loại B”.
(0,5 điểm) Một lô hàng gồm 10 sản phẩm loại A và 7 sản phẩm loại B. Lấy ngẫu nhiên 2 sản phẩm. Tính xác suất của biến cố E: “2 sản phẩm lấy ra có ít nhất một sản phẩm loại B”.
Quảng cáo
Trả lời:

Hướng dẫn giải
Tổng số sản phẩm loại A và loại B là \(10 + 7 = 17\) (sản phẩm).
Khi lấy ngẫu nhiên 2 sản phẩm:
Chọn sản phẩm thứ nhất chọn 1 trong 17 sản phẩm nên có 17 cách;
Chiếc sản phẩm thứ hai chọn \[1\] trong 16 sản phẩm còn lại nên có 16 cách.
Số cách chọn 2 sản phẩm trong số 17 sản phẩm là: \(\frac{{17.16}}{2} = 136\) (cách) (cứ mỗi cặp bị lặp lại 2 lần).
Có \(\frac{{10.9}}{2} = 45\) cách chọn chỉ lấy ra 2 sản phẩm loại A.
Số kết quả thuận lợi của biến cố E là \[136--45 = 91.\]
Vậy xác suất của biến cố E là \(\frac{{91}}{{136}}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Điều kiện xác định của biểu thức \(P\) là \(9 - {x^2} \ne 0,\) \(x + 3 \ne 0\) hay \[x \ne 3,\,\,x \ne - 3\].
Vậy điều kiện xác định của biểu thức \(P\) là \[x \ne 3,\,\,x \ne - 3\].
Lời giải
a) Có \(5 + 3 + 4 + 2 = 14\) kết quả có thể xảy ra và các kết quả là đồng khả năng.
Vậy có 14 kết quả là đồng khả năng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.