Câu hỏi:

21/04/2025 38

Câu 9-11. (2,5 điểm) Cho tam giác \[ABC\] nhọn \[\left( {AB < AC} \right)\] có hai đường cao \[BE,{\rm{ }}CF\] cắt nhau tại \[H.\]

a) Chứng minh: ΔFHB  ΔEHC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a (ảnh 1)

a) Xét \[\Delta FHB\]\[\Delta EHC\] có:

\[\widehat {FHB} = \widehat {EHC}\]; \(\widehat {HFB} = \widehat {HEC}\;\left( { = 90^\circ } \right)\)

Do đó ΔFHB  ΔEHC (g.g).

Câu hỏi cùng đoạn

Câu 2:

b) Chứng minh: \(AF \cdot AB = AE \cdot AC\).

Xem lời giải

verified Lời giải của GV VietJack

b) Xét \[\Delta AEB\]\[\Delta AFC\] có:

\(\widehat {EAB} = \widehat {FAC}\;\,\left( {\widehat A\;\,{\rm{chung}}} \right)\)

\(\widehat {AEB} = \widehat {AFC}\;\left( { = 90^\circ } \right)\)

Do đó ΔAEB  ΔACF  (g.g)
Suy ra \(\frac{{AE}}{{AF}} = \frac{{AB}}{{AC}}\) hay \(AF \cdot AB = AE \cdot AC\) (đpcm)

Câu 3:

c) Đường thẳng qua \[B\] và song song với \[EF\] cắt \[AC\] tại \[M.\] Gọi \[I\] là trung điểm của \[BM,{\rm{ }}D\] là giao điểm của \[EI\]\[BC.\] Chứng minh ba điểm \[A,{\rm{ }}H,{\rm{ }}D\] thẳng hàng.

Xem lời giải

verified Lời giải của GV VietJack

c) Xét \[\Delta ABC\] có hai đường cao \[BE,{\rm{ }}CF\] và cắt nhau tại \[H\] nên suy ra \[H\] là trực tâm của tam giác \[ABC\] nên \[AH \bot BC\].   (1)

Xét \[\Delta BEM\] vuông tại \[E\] \[I\] là trung điểm của \[BM\] nên \(IE = BI = IM = \frac{{BM}}{2}\).

Xét \[\Delta IEM\]\[IE = IM\] (cmt) nên tam giác \[IEM\] cân tại \[I\].

Suy ra \(\widehat {IEM} = \widehat {IME}\).         (2)

Xét \[\Delta ABC\]\[FE{\rm{ // }}BC\] suy ra \(\widehat {AEF} = \widehat {AMB}\) (hai góc đồng vị).            (3)

Ta có \[AF \cdot AB = AE \cdot AC\] suy ra \(\frac{{AF}}{{AC}} = \frac{{AE}}{{AB}}\).

• Xét \[\Delta ABF\]\[\Delta ABC\] có:

\[\widehat {EAF} = \widehat {BAC}\,\;\left( {\widehat A\;\,{\rm{chung}}} \right)\]; \[\frac{{AF}}{{AC}} = \frac{{AE}}{{AB}}\;\,\left( {{\rm{cmt}}} \right)\]

Do đó ΔAEF  ΔABC  (c.g.c)

Suy ra \(\widehat {AEF} = \widehat {ABC}\) (hai góc tương ứng).            (4)

Từ (2), (3), (4) suy ra \(\widehat {CED} = \widehat {ABC}\).

• Xét \[\Delta CED\]\[\Delta CBA\] có:

\(\widehat {ECD} = \widehat {BCA}\,\;\left( {\widehat C\;\,{\rm{chung}}} \right)\); \(\widehat {CED} = \widehat {ABC}\;\,\left( {{\rm{cmt}}} \right)\)

Do đó ΔCED  ΔCBA  (c.g.c)

Suy ra \(\frac{{CE}}{{CB}} = \frac{{CD}}{{CA}}\) hay \(\frac{{CE}}{{CD}} = \frac{{CB}}{{CA}}\).

Xét \[\Delta CEB\]\[\Delta CDA\] có:

\(\frac{{CE}}{{CD}} = \frac{{CB}}{{CA}}\;\,\left( {{\rm{cmt}}} \right)\); \(\widehat {ECB} = \widehat {DCA}\,\;\left( {\widehat C\;\,{\rm{chung}}} \right)\)

Do đó ΔCEB  ΔCDA  (c.g.c)

Suy ra \(\widehat {CDA} = \widehat {CEB}\) (hai góc tương ứng).

Nên \(\widehat {CDA} = 90^\circ \), do đó \(AD \bot BC\).           (5)

Từ (1) và (5) suy ra ba điểm \[A,{\rm{ }}H,{\rm{ }}D\] thẳng hàng (đpcm).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

a) Tìm điều kiện xác định của biểu thức P.

Xem đáp án » 21/04/2025 34

Câu 2:

a) Hỏi có bao nhiêu kết quả đồng khả năng?

Xem đáp án » 21/04/2025 25

Câu 3:

Thanh long là một loại cây chịu hạn, không kén đất, rất thích hợp với điều kiện khí hậu và thổ nhưỡng của tỉnh Bình Thuận. Giá bán 1 kg thanh long ruột đỏ loại I là \[32{\rm{ }}000\] đồng.

a) Viết công thức biểu thị số tiền \[y\] (đồng) thu được khi bán \[x\,\,\left( {{\rm{kg}}} \right)\] thanh long ruột đỏ loại I. Hỏi \[y\] có phải là hàm số của \[x\] không? Vì sao?
b) Tính số tiền thu được khi bán 8 kg thanh long ruột đỏ loại I.

Xem đáp án » 21/04/2025 20

Câu 4:

Một chiếc thang có chiều dài \[AB = 3,7\,\,{\rm{m}}\] đặt cách một bức tường khoảng cách \[BH = 1,2\,\,{\rm{m}}.\] Biết rằng khoảng cách “an toàn” khi \(2,0 < \frac{{AH}}{{BH}} < 2,2\) (xem hình vẽ). Tính chiều cao \[AH.\] Từ đó kiểm tra xem khoảng cách đặt thang cách chân tường là \[BH\] có “an toàn” không?

Xem đáp án » 21/04/2025 17

Câu 5:

(0,5 điểm) Một lô hàng gồm 10 sản phẩm loại A và 7 sản phẩm loại B. Lấy ngẫu nhiên 2 sản phẩm. Tính xác suất của biến cố E: “2 sản phẩm lấy ra có ít nhất một sản phẩm loại B”.

Xem đáp án » 21/04/2025 10

Câu 6:

b) Rút gọn biểu thức P.

Xem đáp án » 21/04/2025 0
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua