Câu hỏi:

21/04/2025 173

Câu 9-11. (2,5 điểm) Cho tam giác \[ABC\] nhọn \[\left( {AB < AC} \right)\] có hai đường cao \[BE,{\rm{ }}CF\] cắt nhau tại \[H.\]

a) Chứng minh: ΔFHB  ΔEHC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a (ảnh 1)

a) Xét \[\Delta FHB\]\[\Delta EHC\] có:

\[\widehat {FHB} = \widehat {EHC}\]; \(\widehat {HFB} = \widehat {HEC}\;\left( { = 90^\circ } \right)\)

Do đó ΔFHB  ΔEHC (g.g).

Câu hỏi cùng đoạn

Câu 2:

b) Chứng minh: \(AF \cdot AB = AE \cdot AC\).

Xem lời giải

verified Lời giải của GV VietJack

b) Xét \[\Delta AEB\]\[\Delta AFC\] có:

\(\widehat {EAB} = \widehat {FAC}\;\,\left( {\widehat A\;\,{\rm{chung}}} \right)\)

\(\widehat {AEB} = \widehat {AFC}\;\left( { = 90^\circ } \right)\)

Do đó ΔAEB  ΔACF  (g.g)
Suy ra \(\frac{{AE}}{{AF}} = \frac{{AB}}{{AC}}\) hay \(AF \cdot AB = AE \cdot AC\) (đpcm)

Câu 3:

c) Đường thẳng qua \[B\] và song song với \[EF\] cắt \[AC\] tại \[M.\] Gọi \[I\] là trung điểm của \[BM,{\rm{ }}D\] là giao điểm của \[EI\]\[BC.\] Chứng minh ba điểm \[A,{\rm{ }}H,{\rm{ }}D\] thẳng hàng.

Xem lời giải

verified Lời giải của GV VietJack

c) Xét \[\Delta ABC\] có hai đường cao \[BE,{\rm{ }}CF\] và cắt nhau tại \[H\] nên suy ra \[H\] là trực tâm của tam giác \[ABC\] nên \[AH \bot BC\].   (1)

Xét \[\Delta BEM\] vuông tại \[E\] \[I\] là trung điểm của \[BM\] nên \(IE = BI = IM = \frac{{BM}}{2}\).

Xét \[\Delta IEM\]\[IE = IM\] (cmt) nên tam giác \[IEM\] cân tại \[I\].

Suy ra \(\widehat {IEM} = \widehat {IME}\).         (2)

Xét \[\Delta ABC\]\[FE{\rm{ // }}BC\] suy ra \(\widehat {AEF} = \widehat {AMB}\) (hai góc đồng vị).            (3)

Ta có \[AF \cdot AB = AE \cdot AC\] suy ra \(\frac{{AF}}{{AC}} = \frac{{AE}}{{AB}}\).

• Xét \[\Delta ABF\]\[\Delta ABC\] có:

\[\widehat {EAF} = \widehat {BAC}\,\;\left( {\widehat A\;\,{\rm{chung}}} \right)\]; \[\frac{{AF}}{{AC}} = \frac{{AE}}{{AB}}\;\,\left( {{\rm{cmt}}} \right)\]

Do đó ΔAEF  ΔABC  (c.g.c)

Suy ra \(\widehat {AEF} = \widehat {ABC}\) (hai góc tương ứng).            (4)

Từ (2), (3), (4) suy ra \(\widehat {CED} = \widehat {ABC}\).

• Xét \[\Delta CED\]\[\Delta CBA\] có:

\(\widehat {ECD} = \widehat {BCA}\,\;\left( {\widehat C\;\,{\rm{chung}}} \right)\); \(\widehat {CED} = \widehat {ABC}\;\,\left( {{\rm{cmt}}} \right)\)

Do đó ΔCED  ΔCBA  (c.g.c)

Suy ra \(\frac{{CE}}{{CB}} = \frac{{CD}}{{CA}}\) hay \(\frac{{CE}}{{CD}} = \frac{{CB}}{{CA}}\).

Xét \[\Delta CEB\]\[\Delta CDA\] có:

\(\frac{{CE}}{{CD}} = \frac{{CB}}{{CA}}\;\,\left( {{\rm{cmt}}} \right)\); \(\widehat {ECB} = \widehat {DCA}\,\;\left( {\widehat C\;\,{\rm{chung}}} \right)\)

Do đó ΔCEB  ΔCDA  (c.g.c)

Suy ra \(\widehat {CDA} = \widehat {CEB}\) (hai góc tương ứng).

Nên \(\widehat {CDA} = 90^\circ \), do đó \(AD \bot BC\).           (5)

Từ (1) và (5) suy ra ba điểm \[A,{\rm{ }}H,{\rm{ }}D\] thẳng hàng (đpcm).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Tổng số sản phẩm loại A và loại B là \(10 + 7 = 17\) (sản phẩm).

Khi lấy ngẫu nhiên 2 sản phẩm:

Chọn sản phẩm thứ nhất chọn 1 trong 17 sản phẩm nên có 17 cách;

Chiếc sản phẩm thứ hai chọn \[1\] trong 16 sản phẩm còn lại nên có 16 cách.

Số cách chọn 2 sản phẩm trong số 17 sản phẩm là: \(\frac{{17.16}}{2} = 136\) (cách) (cứ mỗi cặp bị lặp lại 2 lần).

\(\frac{{10.9}}{2} = 45\) cách chọn chỉ lấy ra 2 sản phẩm loại A.

Số kết quả thuận lợi của biến cố E\[136--45 = 91.\]

Vậy xác suất của biến cố E\(\frac{{91}}{{136}}\).

Lời giải

a) Điều kiện xác định của biểu thức \(P\)\(9 - {x^2} \ne 0,\) \(x + 3 \ne 0\) hay \[x \ne 3,\,\,x \ne - 3\].

Vậy điều kiện xác định của biểu thức \(P\) là \[x \ne 3,\,\,x \ne - 3\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay