Câu hỏi:
27/04/2025 159PHẦN 2. TOÁN HỌC
Cho hàm số \(y = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,b,c \in \mathbb{R}} \right)\) có bảng biến thiên như sau:
Quảng cáo
Trả lời:
Ta có tiệm cận đứng \(x = - \frac{d}{c} = - 1 \Leftrightarrow c = d\).
Tiệm cận ngang \(y = \frac{a}{c} = 2 \Leftrightarrow a = 2c\).
Do đó hàm số \(y = \frac{{2cx + b}}{{cx + c}}\). Ta có \(y' = \frac{{2{c^2} - cb}}{{{{\left( {cx + c} \right)}^2}}}\).
Từ bảng biến thiên, ta thấy hàm số đồng biến trên các khoảng xác định nên \(2{c^2} - cb > 0\) (1).
Khi đó với mỗi giá trị \(b\) luôn tồn tại giá trị \(c\) để thoả mãn (1). Vì vậy các giá trị nguyên của \(b \in \left[ { - 2;3} \right]\) là \(b = \left\{ { - 2; - 1\,;0\,;\,1\,;\,2\,;\,3} \right\}\). Vậy có \(6\) giá trị nguyên thoả mãn bài toán. Chọn A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi A, B, C lần lượt là biến cố thí sinh được chọn lọt vào vòng sơ khảo, vòng bán kết và vòng chung kết.
Vì có 50% thí sinh lọt vào vòng sơ khảo nên \(P\left( A \right) = 0,5\).
Vì có 30% thí sinh của vòng sơ khảo được chọn để vào vòng bán kết nên \(P\left( {B|A} \right) = 0,3\).
Khi đó, xác suất để thí sinh lọt vào vòng bán kết là:
\(P\left( B \right) = P\left( {AB} \right) = P\left( {B|A} \right) \cdot P\left( A \right) = 0,3 \cdot 0,5 = 0,15\). Chọn B.
Lời giải
Nhìn đồ thị ta thấy đồ thị hàm số có đường tiệm cận xiên đi qua hai điểm \(M\left( { - 1\,;0} \right),N\left( {0\,;1} \right)\) nên có phương trình: \(y = x + 1\). Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 1)
ĐGNL ĐHQG TP.HCM - Sử dụng ngôn ngữ Tiếng Việt - Chính tả
(2025) Đề thi thử Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 3)
ĐGNL ĐHQG TP.HCM - Sử dụng ngôn ngữ Tiếng Việt - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 30)
Đề thi Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 4)