Mỗi ngày, bạn Linh đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bạn Linh được thống kê lại ở bảng sau:
Quãng đường (km)
\(\left[ {2,7\,;\,3,0} \right)\)
\(\left[ {3,0\,;\,3,3} \right)\)
\(\left[ {3,3\,;\,3,6} \right)\)
\(\left[ {3,6\,;\,3,9} \right)\)
\(\left[ {3,9\,;\,4,2} \right)\)
Số ngày
3
6
5
4
2
Quãng đường trung bình mà bạn Linh chạy được là:
Mỗi ngày, bạn Linh đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bạn Linh được thống kê lại ở bảng sau:
Quãng đường (km) |
\(\left[ {2,7\,;\,3,0} \right)\) |
\(\left[ {3,0\,;\,3,3} \right)\) |
\(\left[ {3,3\,;\,3,6} \right)\) |
\(\left[ {3,6\,;\,3,9} \right)\) |
\(\left[ {3,9\,;\,4,2} \right)\) |
Số ngày |
3 |
6 |
5 |
4 |
2 |
Quảng cáo
Trả lời:
Ta có bảng tần số ghép nhóm chứa giá trị đại diện như sau:
Quãng đường (km) |
\(\left[ {2,7\,;\,3,0} \right)\) |
\(\left[ {3,0\,;\,3,3} \right)\) |
\(\left[ {3,3\,;\,3,6} \right)\) |
\(\left[ {3,6\,;\,3,9} \right)\) |
\(\left[ {3,9\,;\,4,2} \right)\) |
Giá trị đại diện |
2,85 |
3,15 |
3,45 |
3,75 |
4,05 |
Số ngày |
3 |
6 |
5 |
4 |
2 |
Cỡ mẫu là: \(n = 3 + 6 + 5 + 4 + 2 = 20\).
Số trung bình của mẫu số liệu là:
\(\bar x = \frac{{2,85 \cdot 3 + 3,15 \cdot 6 + 3,45 \cdot 5 + 3,75 \cdot 4 + 4,05 \cdot 2}}{{20}} = 3,39\). Chọn B.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đổi: \(36\,{\rm{km/h}} = 10\,{\rm{m/s}}\); \(54\,{\rm{km/h}} = 15\,{\rm{m/s}}\).
Sau \(3\) giây khi phát hiện đèn tín hiệu, xe máy đi được quãng đường là: \(10 \cdot 3 = 30\) (m).
Sau đó, xe máy bắt đầu giảm tốc và quãng đường xe máy đi được từ lúc bắt đầu giảm tốc lần thứ nhất đến khi dừng hẳn tại vị trí đèn tín hiệu là: \(80 - 30 = 50\) (m).
Khi xe bắt đầu giảm tốc lần thứ nhất ta có: \({v_1}\left( 0 \right) = a \cdot 0 + b\, = 10\,\,{\rm{m/s}} \Rightarrow b = 10\).
Ta có \[{s_1}\left( t \right) = \int {{v_1}\left( t \right)dt} = \int {\left( {at + b} \right)dt} \,\, = \int {\left( {at + 10} \right)dt} \,\, = \frac{{a{t^2}}}{2} + 10t + {C_1}\,\,\left( {\rm{m}} \right)\].
Theo đề \[{s_1}\left( 0 \right) = 0 \Rightarrow {C_1} = 0 \Rightarrow {s_1}\left( t \right)\, = \frac{{a{t^2}}}{2} + 10t\,\,\left( {\rm{m}} \right)\].
Khi xe dừng tại vị trí đèn tín hiệu thì thời gian đi được của xe kể từ khi giảm tốc lần thứ nhất là: \[{v_1}\left( t \right) = 0 \Rightarrow at + 10 = 0 \Rightarrow t = \frac{{ - 10}}{a}\,\,\left( {\rm{s}} \right)\].
Ta có: \[{s_1}\left( {\frac{{ - 10}}{a}} \right)\, = 50 \Rightarrow \frac{a}{2} \cdot {\left( {\frac{{ - 10}}{a}} \right)^2} + 10\left( {\frac{{ - 10}}{a}} \right) = 50 \Rightarrow a = - 1 < 0\] (thỏa mãn).
Do đó \[t = \frac{{ - 10}}{{ - 1}} = 10\,\,\left( {\rm{s}} \right)\]. Vậy xe máy dừng hẳn tại vị trí đèn tín hiệu sau \(10\) giây kể từ khi bắt đầu giảm tốc lần thứ nhất. Chọn A.
Lời giải
Ta có: \({2^x} = {\left( {\frac{1}{3}} \right)^x} - 1 \Leftrightarrow {2^x} + 1 - {\left( {\frac{1}{3}} \right)^x} = 0 \Leftrightarrow f\left( x \right) = 0\).
+ Hàm số \(f\left( x \right) = {2^x} + 1 - {\left( {\frac{1}{3}} \right)^x}\) có \(f'\left( x \right) = {2^x}\ln 2 + {\left( {\frac{1}{3}} \right)^x}\ln 3 > 0,\,\forall x \in \mathbb{R}\) nên \(f\left( x \right)\) là hàm số đồng biến trên \(\mathbb{R}\).
+ Lại có \(f\left( { - 1} \right) \cdot f\left( 0 \right) < 0\) nên phương trình đã cho có 1 nghiệm thuộc \(\left( { - 1;0} \right)\).
Vậy phương trình có duy nhất 1 nghiệm. Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.