Quảng cáo
Trả lời:
Đáp án D
Hướng dẫn giải
Từ câu 70 ta có cấp số cộng \(\left( {{u_n}} \right)\) có dạng: \(\left\{ {\begin{array}{*{20}{l}}{{u_1} = - 65}\\{{u_n} = {u_{n - 1}} + 25}\end{array}} \right.\)
\({\rm{lim}}\frac{{{u_n} + 5}}{{5n + 2}} = {\rm{lim}}\frac{{{u_1} + \left( {n - 1} \right)d + 6}}{{5n + 2}} = {\rm{lim}}\frac{{25n - 85}}{{5n + 2}} = {\rm{lim}}\left( {5 - \frac{{95}}{{5n + 2}}} \right) = 5\)
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A
Hướng dẫn giải
Vì \(AD//BC\) nên \(d\left( {AD,SC} \right) = d\left( {AD,\left( {SBC} \right)} \right) = d\left( {A,\left( {SBC} \right)} \right)\).
Ta có:
\({\rm{BC}} \bot {\rm{AB}}\) (do ABCD là hình vuông).
\(SA \bot BC\,\,\left( {do\,\,SA \bot \left( {ABCD} \right)} \right)\).
\( \Rightarrow {\rm{BC}} \bot \left( {{\rm{SAC}}} \right)\).
Trong tam giác SAB, kẻ \({\rm{AH}} \bot {\rm{SB}}\)
Mà: \({\rm{BC}} \bot \left( {{\rm{SAB}}} \right) \Rightarrow {\rm{BC}} \bot {\rm{AH}}\)
\( \Rightarrow {\rm{AH}} \bot \left( {{\rm{SBC}}} \right) \Rightarrow {\rm{d}}\left( {{\rm{A}},\left( {{\rm{SBC}}} \right)} \right) = {\rm{AH}}\).
Xét tam giác SAB vuông tại A, có AH là đường cao:
\(\frac{1}{{{\rm{A}}{{\rm{B}}^2}}} + \frac{1}{{{\rm{S}}{{\rm{A}}^2}}} = \frac{1}{{{\rm{A}}{{\rm{H}}^2}}} \Rightarrow {\rm{AH}} = \frac{{2{\rm{a}}\sqrt 6 }}{3}\).
Vậy khoảng cách giữa hai đường thẳng AD và SC bằng \(\frac{{2{\rm{a}}\sqrt 6 }}{3}\).
Lời giải
Đáp án A
Hướng dẫn giải
Đoạn 1 nói về lý do Harvard được công nhận toàn cầu nhờ lịch sử lâu đời và thành tích học thuật.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.