Câu hỏi:
03/05/2025 49
Xác suất để trong lần rút có đủ cả 3 loại quà tặng (100.000 đồng, 50.000 đồng, 20.000 đồng) là
Quảng cáo
Trả lời:
Đáp án B
Hướng dẫn giải
Không gian mẫu: "lấy 3 tờ phiếu từ thùng".
\(n\left( {\rm{\Omega }} \right) = C_{24}^3 = 2024.\)
Số cách lấy 1 tờ phiếu mệnh giá 100.000 đồng, 1 tờ phiếu mệnh giá 50.000 đồng và 1 tờ phiếu mệnh giá 20.000 đồng là: \(C_7^1.C_8^1.C_9^1 = 504\).
Vậy xác suất để trong lần rút có cả 3 loại quà tặng là: \(\frac{{504}}{{2024}} = \frac{{63}}{{253}} = 24,90{\rm{\% }}\).
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A
Hướng dẫn giải
Vì \(AD//BC\) nên \(d\left( {AD,SC} \right) = d\left( {AD,\left( {SBC} \right)} \right) = d\left( {A,\left( {SBC} \right)} \right)\).
Ta có:
\({\rm{BC}} \bot {\rm{AB}}\) (do ABCD là hình vuông).
\(SA \bot BC\,\,\left( {do\,\,SA \bot \left( {ABCD} \right)} \right)\).
\( \Rightarrow {\rm{BC}} \bot \left( {{\rm{SAC}}} \right)\).
Trong tam giác SAB, kẻ \({\rm{AH}} \bot {\rm{SB}}\)
Mà: \({\rm{BC}} \bot \left( {{\rm{SAB}}} \right) \Rightarrow {\rm{BC}} \bot {\rm{AH}}\)
\( \Rightarrow {\rm{AH}} \bot \left( {{\rm{SBC}}} \right) \Rightarrow {\rm{d}}\left( {{\rm{A}},\left( {{\rm{SBC}}} \right)} \right) = {\rm{AH}}\).
Xét tam giác SAB vuông tại A, có AH là đường cao:
\(\frac{1}{{{\rm{A}}{{\rm{B}}^2}}} + \frac{1}{{{\rm{S}}{{\rm{A}}^2}}} = \frac{1}{{{\rm{A}}{{\rm{H}}^2}}} \Rightarrow {\rm{AH}} = \frac{{2{\rm{a}}\sqrt 6 }}{3}\).
Vậy khoảng cách giữa hai đường thẳng AD và SC bằng \(\frac{{2{\rm{a}}\sqrt 6 }}{3}\).
Lời giải
Đáp án A
Hướng dẫn giải
Đoạn 1 nói về lý do Harvard được công nhận toàn cầu nhờ lịch sử lâu đời và thành tích học thuật.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.