Quảng cáo
Trả lời:
Đáp án A
Hướng dẫn giải
Gọi H là chân đường cao kẻ từ A của tam giác \({\rm{ABC}} \Rightarrow {h_a} = {\rm{AH}}\).
Công thức tính diện tích tam giác ABC là:
\(S = \frac{1}{2}.AH.BC\).
\( \Rightarrow {h_a} = \frac{{2.S}}{{BC}}\). (2)
Tìm diện tích tam giác ABC:
Ta có: \({\rm{sin}}{(BAC)^2} + {\rm{cos}}{(BAC)^2} = 1\)
\( \Rightarrow {\rm{sin}}\left( {BAC} \right) = \sqrt {1 - {\rm{cos}}{{(BAC)}^2}} = \sqrt {1 - {{\left( {\frac{{67}}{{80}}} \right)}^2}} = \frac{{7\sqrt {39} }}{{80}}\).
\({\rm{S}} = \frac{1}{2}.{\rm{AB}}.{\rm{AC}}.\sin \left( {BAC} \right) = \frac{1}{2}.4.10.\frac{{7\sqrt {39} }}{{80}} = \frac{{7\sqrt {39} }}{4}\).
Áp dụng công thức (2):
\({h_a} = \frac{{2.S}}{{BC}} = \frac{{2 \cdot \frac{{7\sqrt {39} }}{4}}}{7} = \frac{{\sqrt {39} }}{2}\).
\( \Rightarrow \) Ta chọn đáp án A
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A
Hướng dẫn giải
Vì \(AD//BC\) nên \(d\left( {AD,SC} \right) = d\left( {AD,\left( {SBC} \right)} \right) = d\left( {A,\left( {SBC} \right)} \right)\).
Ta có:
\({\rm{BC}} \bot {\rm{AB}}\) (do ABCD là hình vuông).
\(SA \bot BC\,\,\left( {do\,\,SA \bot \left( {ABCD} \right)} \right)\).
\( \Rightarrow {\rm{BC}} \bot \left( {{\rm{SAC}}} \right)\).
Trong tam giác SAB, kẻ \({\rm{AH}} \bot {\rm{SB}}\)
Mà: \({\rm{BC}} \bot \left( {{\rm{SAB}}} \right) \Rightarrow {\rm{BC}} \bot {\rm{AH}}\)
\( \Rightarrow {\rm{AH}} \bot \left( {{\rm{SBC}}} \right) \Rightarrow {\rm{d}}\left( {{\rm{A}},\left( {{\rm{SBC}}} \right)} \right) = {\rm{AH}}\).
Xét tam giác SAB vuông tại A, có AH là đường cao:
\(\frac{1}{{{\rm{A}}{{\rm{B}}^2}}} + \frac{1}{{{\rm{S}}{{\rm{A}}^2}}} = \frac{1}{{{\rm{A}}{{\rm{H}}^2}}} \Rightarrow {\rm{AH}} = \frac{{2{\rm{a}}\sqrt 6 }}{3}\).
Vậy khoảng cách giữa hai đường thẳng AD và SC bằng \(\frac{{2{\rm{a}}\sqrt 6 }}{3}\).
Lời giải
Đáp án A
Hướng dẫn giải
Đoạn 1 nói về lý do Harvard được công nhận toàn cầu nhờ lịch sử lâu đời và thành tích học thuật.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.