Câu hỏi:

03/05/2025 37

Dựa vào thông tin dưới đây để trả lời các câu từ 83 đến câu 84

Trong mặt phẳng \(Oxy\), cho tam giác \(ABC\) có phương trình đường cao \(AF\)\(3x - y - 6 = 0\), phương trình đường cao \(BE\)\( - 3x - y - 6 = 0\), phương trình cạnh \(AB\)\(x + 2y - 9 = 0\).

Tung độ của điểm A là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Hướng dẫn giải

Ta có \(A\) là giao điểm của \(AF\)\(AB\) nên:

Phương trình AF: \(3{\rm{x}} - {\rm{y}} - 6 = 0\) (1)

Phương trình \({\rm{AB}}:{\rm{x}} + 2{\rm{y}} - 9 = 0\) (2)

\(\left( 1 \right)\)\(\left( 2 \right) \Rightarrow {x_A} = 3,{y_A} = 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

Hướng dẫn giải

 Khoảng cách giữa hai đường thẳng AD và SC bằng (ảnh 1)

\(AD//BC\) nên \(d\left( {AD,SC} \right) = d\left( {AD,\left( {SBC} \right)} \right) = d\left( {A,\left( {SBC} \right)} \right)\).

Ta có:

\({\rm{BC}} \bot {\rm{AB}}\) (do ABCD là hình vuông).

\(SA \bot BC\,\,\left( {do\,\,SA \bot \left( {ABCD} \right)} \right)\).

\( \Rightarrow {\rm{BC}} \bot \left( {{\rm{SAC}}} \right)\).

Trong tam giác SAB, kẻ \({\rm{AH}} \bot {\rm{SB}}\)

Mà: \({\rm{BC}} \bot \left( {{\rm{SAB}}} \right) \Rightarrow {\rm{BC}} \bot {\rm{AH}}\)

\( \Rightarrow {\rm{AH}} \bot \left( {{\rm{SBC}}} \right) \Rightarrow {\rm{d}}\left( {{\rm{A}},\left( {{\rm{SBC}}} \right)} \right) = {\rm{AH}}\).

Xét tam giác SAB vuông tại A, có AH là đường cao:

\(\frac{1}{{{\rm{A}}{{\rm{B}}^2}}} + \frac{1}{{{\rm{S}}{{\rm{A}}^2}}} = \frac{1}{{{\rm{A}}{{\rm{H}}^2}}} \Rightarrow {\rm{AH}} = \frac{{2{\rm{a}}\sqrt 6 }}{3}\).

Vậy khoảng cách giữa hai đường thẳng AD và SC bằng \(\frac{{2{\rm{a}}\sqrt 6 }}{3}\).

Câu 2

Lời giải

Đáp án A

Hướng dẫn giải

Đoạn 1 nói về lý do Harvard được công nhận toàn cầu nhờ lịch sử lâu đời và thành tích học thuật.

 

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP