Một người nông dân thả 1000 con cá giống vào hồ nuôi vừa mới đào. Biết rằng sau mỗi năm thì số lượng cá trong hồ tăng lên x lần so với lượng cá ban đầu và x không đổi. Bằng cách thay đổi kỹ thuật nuôi và thức căn cho cá. Hỏi sau hai năm để số cá trong hồ là 36000 con thì tốc độ tăng số lượng cá trong hồ x là bao nhiêu? Biết tốc độ tăng mỗi năm là không đổi.
Một người nông dân thả 1000 con cá giống vào hồ nuôi vừa mới đào. Biết rằng sau mỗi năm thì số lượng cá trong hồ tăng lên x lần so với lượng cá ban đầu và x không đổi. Bằng cách thay đổi kỹ thuật nuôi và thức căn cho cá. Hỏi sau hai năm để số cá trong hồ là 36000 con thì tốc độ tăng số lượng cá trong hồ x là bao nhiêu? Biết tốc độ tăng mỗi năm là không đổi.
Quảng cáo
Trả lời:
Lời giải:
Sau 1 năm, số lượng cá trong hồ là: 1000 + 1000x = 1000(1 + x) (con)
Sau 2 năm, số lượng cá trong hồ là: 1000(1 + x) + 1000(1 + x)x = 1000 (1 + x)2 (con)
Điều kiện: x > 0.
Để số lượng cá trong hồ sau 2 năm là 36000 thì ta có:
\(1000{(1 + x)^2} = 36000 \Leftrightarrow \left[ \begin{array}{l}x = 5\\x = - 7\end{array} \right.\)
Loại x = -7
Vậy tốc độ tăng số cá mỗi là x = 5
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Xét parabol trên mặt phẳng Oxy có đỉnh I (0; 3) và cắt trục Ox tại hai điểm (-1; 0) và
(1; 0).
Khi đó phương trình của parabol là y = -3x2 + 3
Khi đó diện tích một cánh hoa là: \(\int\limits_{ - 1}^1 {\left| { - 3{x^2} + 3} \right|dx} \)= 4 (dm2)
Diện tích 1 hình lục giác đều cạnh bằng 2 dm là: \(6.\frac{{{2^2}\sqrt 3 }}{4} = 6\sqrt 3 \)
Khi đó diện tích của một hình là \(6\sqrt 2 + 6.4 = 24 + 6\sqrt 2 \) (dm2)
Diện tích của bức tường là: 3 ´ 4 = 12 (m2) = 1200 (dm2)
Bạn Hoa có thể vẽ tối đa số hình có cùng kích thước lên bức tường cần trang trí là:
\(\left[ {1200:(24 + 6\sqrt 2 } \right] = 34\)
Vậy bạn Hoa có thể vẽ tối đa 34 hình có cùng kích thước trên lên bức tường cần trang trí
Lời giải
Lời giải:
\[\left( {1 + \frac{7}{9}} \right) \cdot \left( {1 + \frac{7}{{20}}} \right) \cdot \left( {1 + \frac{7}{{33}}} \right) \cdot .. \cdot \left( {1 + \frac{7}{{2900}}} \right)\]
\[ = \frac{{16}}{9} \cdot \frac{{27}}{{20}} \cdot \frac{{40}}{{33}} \cdot ... \cdot \frac{{2\,\,907}}{{2\,\,900}}\]
\[ = \frac{{2 \cdot 8 \cdot 3 \cdot 9 \cdot 4 \cdot 10 \cdot ... \cdot 51 \cdot 57}}{{1 \cdot 9 \cdot 2 \cdot 10 \cdot 3 \cdot 11 \cdot ... \cdot 50 \cdot 58}}\]
\[ = \frac{{\left( {2 \cdot 3 \cdot 4 \cdot \cdot \cdot 51} \right)\left( {8 \cdot 9 \cdot 10 \cdot \cdot \cdot 57} \right)}}{{\left( {1 \cdot 2 \cdot 3 \cdot \cdot \cdot 50} \right)\left( {9 \cdot 10 \cdot 11 \cdot \cdot \cdot 58} \right)}}\]
\[ = \frac{{51 \cdot 8}}{{50 \cdot 58}}\]
\[ = \frac{{51 \cdot 2 \cdot 2 \cdot 2}}{{25 \cdot 2 \cdot 2 \cdot 29}}\]
\[ = \frac{{102}}{{725}}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.