Câu hỏi:

19/08/2025 193 Lưu

Chứng minh rằng:

\[\frac{1}{{\sqrt 1 }} + \frac{1}{{\sqrt 2 }} + \frac{1}{{\sqrt 3 }} + \frac{1}{{\sqrt 4 }} + ... + \frac{1}{{\sqrt n }} > \sqrt n \] với n  ℕ và n > 1.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải:

Với n  ℕ và n > 1, ta có:

\[\frac{1}{{\sqrt 1 }} + \frac{1}{{\sqrt 2 }} + \frac{1}{{\sqrt 3 }} + \frac{1}{{\sqrt 4 }} + ... + \frac{1}{{\sqrt n }} > \frac{1}{{\sqrt n }} + \frac{1}{{\sqrt n }} + \frac{1}{{\sqrt n }} + \frac{1}{{\sqrt n }} + ... + \frac{1}{{\sqrt n }} = n \cdot \frac{1}{{\sqrt n }} = \sqrt n .\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

\[\frac{1}{9} \times {27^n} = {3^n}\]

\[\frac{1}{9} = \frac{{{3^n}}}{{{{27}^n}}}\]

\[\frac{1}{9} = {\left( {\frac{3}{{27}}} \right)^n} = {\left( {\frac{1}{9}} \right)^n}\]

n = 1

Vậy n = 1.

Lời giải

Lời giải:

\[\frac{1}{9} \times {3^4} \times {3^n} = {3^7}\]

\[\frac{1}{9} \times 81 \times {3^n} = {3^7}\]

9 × 3n = 37

32 × 3n = 37

32 + n = 37 

2 + n = 7

n = 7 ‒ 2

n = 5

Vậy n = 5.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP