Câu hỏi:

10/05/2025 36

Giải hệ phương trình \(\left\{ \begin{array}{l}{x^3} + 3x{y^2} = 6xy - 3x - 49\\{x^2} - 8xy + {y^2} = 10y - 25x - 9\end{array} \right.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Nhân phương trình thứ hai với 3 và cộng với phương trình thứ nhất ta được:

(x + 1)3 + 3y2(x + 1) – 30y(x + 1) + 75(x + 1) = 0

(x + 1)[(x + 1)2 + 3(y – 5)2] = 0

\(\left[ \begin{array}{l}x = - 1\\y = 5\end{array} \right.\)

Với x = -1 thì ta có: y2 – 2y – 15 = 0 \(\left[ \begin{array}{l}y = - 3\\y = 5\end{array} \right.\)

Với y = 5 thì (x + 1)3 = 0 suy ra x = -1

Vậy (x;y) = {(-1;-3), (-1;5)}

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

\(\left\{ \begin{array}{l}{x^2} + {y^2} + 2\left( {xy + 3x - y} \right) = 0\\{x^2} + {y^2} + 4x - 2y = 0\left( 2 \right)\end{array} \right.\)

 Trừ phương trình thứ nhất cho phương trình thứ hai, ta được:

2(xy + 3x – y) – 4x + 2y = 0

2xy + 2x = 0

2x(y + 1) = 0

Suy ra: x = 0 hoặc y = -1

+ Với x = 0, thay vào (2) ta có: y2 – 2y = 0 \(\left[ \begin{array}{l}y = 0\\y = 2\end{array} \right.\)

+ Với y = -1, thay vào (2) ta có: x2 + 4x + 3 = 0 \(\left[ \begin{array}{l}x = - 1\\x = - 3\end{array} \right.\)

Lời giải

Lời giải:

\(\left\{ \begin{array}{l}xy\left( {3x + y} \right) = 4\\7{x^3} + 11 = 3\left( {x + y} \right)\left( {x + y + 1} \right)\end{array} \right.\)

\(\left\{ \begin{array}{l}xy\left( {3x + y} \right) = 4\\7{x^3} + 12 = 3\left( {x + y} \right)\left( {x + y + 1} \right) + 1\end{array} \right.\)

\(\left\{ \begin{array}{l}3xy\left( {3x + y} \right) = 12\\7{x^3} + 12 = 3\left( {x + y} \right)\left( {x + y + 1} \right) + 1\end{array} \right.\)

\(\left\{ \begin{array}{l}3xy\left( {3x + y} \right) = 12\\7{x^3} + 3xy\left( {3x + y} \right) = 3\left( {x + y} \right)\left( {x + y + 1} \right) + 1\end{array} \right.\)

\(\left\{ \begin{array}{l}3xy\left( {3x + y} \right) = 12\\{\left( {2x + y} \right)^3} = {\left( {x + y + 1} \right)^3}\end{array} \right.\)

\(\left\{ \begin{array}{l}3xy\left( {3x + y} \right) = 12\\2x + y = x + y + 1\end{array} \right.\)

\(\left[ \begin{array}{l}\left\{ \begin{array}{l}y = - 4\\x = 1\end{array} \right.\\\left\{ \begin{array}{l}y = 4\\x = 1\end{array} \right.\end{array} \right.\)

Vậy (x;y) = (1;4) , (1;-4)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

XIX là số mấy?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay