Câu hỏi:
28/05/2025 36
Cho tứ diện \(ABCD\). Gọi \(I\) và \(J\) theo thứ tự là trung điểm của \(AD\) và \(AC\), \(G\) là trọng tâm tam giác \(BCD\). Giao tuyến của hai mặt phẳng \(\left( {GIJ} \right)\) và \(\left( {BCD} \right)\)là đường thẳng:
Quảng cáo
Trả lời:
C
Ta có \(\left\{ \begin{array}{l}\left( {GIJ} \right) \cap \left( {BCD} \right) = G\\IJ \subset \left( {GIJ} \right),\;CD \subset \left( {BCD} \right)\\IJ\parallel CD\end{array} \right.\) \(\left( {GIJ} \right) \cap \left( {BCD} \right) = Gx\parallel IJ\parallel CD.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
- Ta có \(IJ\) là đường trung bình của tam giác \(BCD\) nên \(IJ//CD,IJ = \frac{1}{2}CD\).
Khi đó: \(\left\{ {\begin{array}{*{20}{l}}{(P) \cap (ACD) = MN}\\{IJ \subset (P),CD \subset (ACD) \Rightarrow MN//IJ//CD.}\\{IJ//CD}\end{array}} \right.\)
Vì vậy \(IJNM\) là một hình thang.
ta có: \(IJ//MN\).
Vì vậy, \(IJNM\) là hình bình hành khi và chỉ khi \(IJ = MN\).
Khi đó, \(MN = \frac{1}{2}CD,MN//CD\).
Suy ra \(MN\) là đường trung bình của tam giác \(ACD\), hay \(M\) là trung điểm của đoạn \(AC\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Lời giải
C
Có 3 cặp đường thẳng chéo nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.