Câu hỏi:

28/05/2025 36

Cho tứ diện \(ABCD\). Gọi \(I\) và \(J\) theo thứ tự là trung điểm của \(AD\) và \(AC\), \(G\) là trọng tâm tam giác \(BCD\). Giao tuyến của hai mặt phẳng \(\left( {GIJ} \right)\) và \(\left( {BCD} \right)\)là đường thẳng: 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

C

C (ảnh 1)

Ta có \(\left\{ \begin{array}{l}\left( {GIJ} \right) \cap \left( {BCD} \right) = G\\IJ \subset \left( {GIJ} \right),\;CD \subset \left( {BCD} \right)\\IJ\parallel CD\end{array} \right.\)  \(\left( {GIJ} \right) \cap \left( {BCD} \right) = Gx\parallel IJ\parallel CD.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

C (ảnh 1)

- Ta có \(IJ\) là đường trung bình của tam giác \(BCD\) nên \(IJ//CD,IJ = \frac{1}{2}CD\).

Khi đó: \(\left\{ {\begin{array}{*{20}{l}}{(P) \cap (ACD) = MN}\\{IJ \subset (P),CD \subset (ACD) \Rightarrow MN//IJ//CD.}\\{IJ//CD}\end{array}} \right.\)

Vì vậy \(IJNM\) là một hình thang.

ta có: \(IJ//MN\).

Vì vậy, \(IJNM\) là hình bình hành khi và chỉ khi \(IJ = MN\).

Khi đó, \(MN = \frac{1}{2}CD,MN//CD\).

Suy ra \(MN\) là đường trung bình của tam giác \(ACD\), hay \(M\) là trung điểm của đoạn \(AC\).

Đáp án: a) Đúng;   b) Sai;   c) Đúng;  d) Đúng.

Câu 2

Lời giải

C

Có 3 cặp đường thẳng chéo nhau.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP