Câu hỏi:

28/05/2025 34

PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI

Cho hình chóp S.ABCD có đáy là hình bình hành. Điểm M thuộc cạnh SA, điểm E và F lần lượt là trung điểm của AB và BC.

a) EF // AC.

b) Giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng qua S và song song với AC.

c) Giao tuyến của hai mặt phẳng (MBC) và (SAD) là đường thẳng qua M và song song với BC.

d) Giao tuyến của hai mặt phẳng (MEF) và (SAC) là đường thẳng qua M và song song với AC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) EF // AC.  b) Giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng qua S và song song với AC. (ảnh 1)

a) Vì E và F lần lượt là trung điểm của AB và BC nên EF là đường trung bình của tam giác ABC.

Suy ra EF // AC.

b) Ta có \(\left\{ \begin{array}{l}S = \left( {SAB} \right) \cap \left( {SCD} \right)\\AB \subset \left( {SAB} \right),CD \subset \left( {SCD} \right)\\AB//CD\end{array} \right.\).

Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng qua S và song song với AB.

c) Ta có \(\left\{ \begin{array}{l}M = \left( {MBC} \right) \cap \left( {SAD} \right)\\BC \subset \left( {MBC} \right),AD \subset \left( {SAD} \right)\\BC//AD\end{array} \right.\).

Do đó giao tuyến của hai mặt phẳng (MBC) và (SAD) là đường thẳng qua M và song song với BC.

d) Ta có \(\left\{ \begin{array}{l}M = \left( {MEF} \right) \cap \left( {SAC} \right)\\EF \subset \left( {MEF} \right),AC \subset \left( {SAC} \right)\\EF//AC\end{array} \right.\).

Do đó giao tuyến của hai mặt phẳng (MEF) và (SAC) là đường thẳng qua M và song song với AC.

Đáp án: a) Đúng;   b) Sai;   c) Đúng; d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

C (ảnh 1)

- Ta có \(IJ\) là đường trung bình của tam giác \(BCD\) nên \(IJ//CD,IJ = \frac{1}{2}CD\).

Khi đó: \(\left\{ {\begin{array}{*{20}{l}}{(P) \cap (ACD) = MN}\\{IJ \subset (P),CD \subset (ACD) \Rightarrow MN//IJ//CD.}\\{IJ//CD}\end{array}} \right.\)

Vì vậy \(IJNM\) là một hình thang.

ta có: \(IJ//MN\).

Vì vậy, \(IJNM\) là hình bình hành khi và chỉ khi \(IJ = MN\).

Khi đó, \(MN = \frac{1}{2}CD,MN//CD\).

Suy ra \(MN\) là đường trung bình của tam giác \(ACD\), hay \(M\) là trung điểm của đoạn \(AC\).

Đáp án: a) Đúng;   b) Sai;   c) Đúng;  d) Đúng.

Câu 2

Cho tứ diện \(ABCD\), gọi \(M\) và \(N\) lần lượt là trung điểm các cạnh \(AB\) và \(CD\). Gọi \(G\) là trọng tâm tam giác \(BCD\). Đường thẳng \(AG\) cắt đường thẳng nào trong các đường thẳng dưới đây? 

Lời giải

A

Do \(AG\)\(MN\) cùng nằm trong mặt phẳng \(\left( {ABN} \right)\) nên hai đường thẳng cắt nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay