Câu hỏi:

28/05/2025 54 Lưu

PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI

Cho hình chóp S.ABCD có đáy là hình bình hành. Điểm M thuộc cạnh SA, điểm E và F lần lượt là trung điểm của AB và BC.

a) EF // AC.

b) Giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng qua S và song song với AC.

c) Giao tuyến của hai mặt phẳng (MBC) và (SAD) là đường thẳng qua M và song song với BC.

d) Giao tuyến của hai mặt phẳng (MEF) và (SAC) là đường thẳng qua M và song song với AC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) EF // AC.  b) Giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng qua S và song song với AC. (ảnh 1)

a) Vì E và F lần lượt là trung điểm của AB và BC nên EF là đường trung bình của tam giác ABC.

Suy ra EF // AC.

b) Ta có \(\left\{ \begin{array}{l}S = \left( {SAB} \right) \cap \left( {SCD} \right)\\AB \subset \left( {SAB} \right),CD \subset \left( {SCD} \right)\\AB//CD\end{array} \right.\).

Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng qua S và song song với AB.

c) Ta có \(\left\{ \begin{array}{l}M = \left( {MBC} \right) \cap \left( {SAD} \right)\\BC \subset \left( {MBC} \right),AD \subset \left( {SAD} \right)\\BC//AD\end{array} \right.\).

Do đó giao tuyến của hai mặt phẳng (MBC) và (SAD) là đường thẳng qua M và song song với BC.

d) Ta có \(\left\{ \begin{array}{l}M = \left( {MEF} \right) \cap \left( {SAC} \right)\\EF \subset \left( {MEF} \right),AC \subset \left( {SAC} \right)\\EF//AC\end{array} \right.\).

Do đó giao tuyến của hai mặt phẳng (MEF) và (SAC) là đường thẳng qua M và song song với AC.

Đáp án: a) Đúng;   b) Sai;   c) Đúng; d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

C

Có 3 cặp đường thẳng chéo nhau.

Câu 2

Lời giải

B

Nếu c cắt a thì c cắt b hoặc c chéo b.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP