Câu hỏi:
28/05/2025 43
Cho tứ diện ABCD và ba điểm P, Q, R lần lượt lấy trên 3 cạnh AB, CD, BC sao cho \(\frac{{AP}}{{AB}} = \frac{{CQ}}{{BC}} = \frac{1}{3}\); CR = RD. Gọi S là giao của đường thẳng AD và mặt phẳng (PQR). Tỷ số \(\frac{{AS}}{{AD}}\) bằng bao nhiêu?
Cho tứ diện ABCD và ba điểm P, Q, R lần lượt lấy trên 3 cạnh AB, CD, BC sao cho \(\frac{{AP}}{{AB}} = \frac{{CQ}}{{BC}} = \frac{1}{3}\); CR = RD. Gọi S là giao của đường thẳng AD và mặt phẳng (PQR). Tỷ số \(\frac{{AS}}{{AD}}\) bằng bao nhiêu?
Quảng cáo
Trả lời:
Vì \(\frac{{AP}}{{AB}} = \frac{{CQ}}{{BC}} = \frac{1}{3}\) nên PQ // AC.
Vì R là điểm chung của mặt phẳng (PQR) và (ACD).
Mà PQ // AC nên giao tuyến của hai mặt phẳng này là đường thẳng qua R và song song với AC cắt AD tại S.
Do đó S là giao điểm của AD và mặt phẳng (PQR).
Vì R là trung điểm của CD và RS // AC nên S là trung điểm của AD.
Do đó \(\frac{{AS}}{{AD}} = 0,5\).
Trả lời: 0,5.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
- Ta có \(IJ\) là đường trung bình của tam giác \(BCD\) nên \(IJ//CD,IJ = \frac{1}{2}CD\).
Khi đó: \(\left\{ {\begin{array}{*{20}{l}}{(P) \cap (ACD) = MN}\\{IJ \subset (P),CD \subset (ACD) \Rightarrow MN//IJ//CD.}\\{IJ//CD}\end{array}} \right.\)
Vì vậy \(IJNM\) là một hình thang.
ta có: \(IJ//MN\).
Vì vậy, \(IJNM\) là hình bình hành khi và chỉ khi \(IJ = MN\).
Khi đó, \(MN = \frac{1}{2}CD,MN//CD\).
Suy ra \(MN\) là đường trung bình của tam giác \(ACD\), hay \(M\) là trung điểm của đoạn \(AC\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Lời giải
C
Có 3 cặp đường thẳng chéo nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.