Câu hỏi:

29/05/2025 18

Cho hình chóp S.ABCD có đáy là hình bình hành tâm O, gọi M, N lần lượt là trung điểm SA, AD. Mặt phẳng (MNO) song song với mặt phẳng nào sau đây? 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

B

Cho hình chóp S.ABCD có đáy là hình bình hành tâm O, gọi M, N lần lượt là trung điểm SA, AD. Mặt phẳng (MNO) song song với mặt phẳng nào sau đây?  	 (ảnh 1)

Ta có O, N lần lượt là trung điểm của AC và AD.

Suy ra ON là đường trung bình của tam giác ACD.

Do đó ON // CD mà CD Ì (SCD) nên ON // (SCD) (1).

Ta có O, M lần lượt là trung điểm của AC và SA.

Suy ra OM là đường trung bình của tam giác SAC.

Do đó OM // SC mà SC Ì (SCD) nên OM // (SCD) (2).

Từ (1) và (2), suy ra (MNO) // (SCD).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy hình thang (AB // CD) và AB = 2CD. Gọi I, J lần lượt là trung điểm của SB và AB. Mặt phẳng nào song song với mặt phẳng (SAD)? 

Xem đáp án » 29/05/2025 42

Câu 2:

Cho hình hộp ABCD.A'B'C'D'. Khẳng định nào sau đây đúng? 

Xem đáp án » 29/05/2025 27

Câu 3:

Cho hình lăng trụ \[ABC.{A_1}{B_1}{C_1}.\]

a) \(\left( {ABC} \right)\)//\[\left( {{A_1}{B_1}{C_1}} \right).\]

b) \(A{A_1}\)//\[\left( {BC{C_1}} \right).\]

c) \(AB\)//\[\left( {{A_1}{B_1}{C_1}} \right).\]             

d) \(A{A_1}{B_1}B\) là hình chữ nhật.

Xem đáp án » 29/05/2025 27

Câu 4:

Cho hình chóp S.ABC có đáy là tam giác ABC. Mặt phẳng (P) song song với (ABC) cắt đoạn SA tại M sao cho SM = 2MA. Gọi N là giao điểm của mặt phẳng (P) và các cạnh SC. Tính tỉ số \(\frac{{SN}}{{SC}}\) (kết quả làm tròn đến chữ số thập phân thứ hai).

Xem đáp án » 29/05/2025 23

Câu 5:

PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi H, I, K lần lượt là trung điểm của SA, SB, SC. Gọi M là giao điểm của AI và KD, N là giao điểm của DH và CI. Khi đó:

a) HI // (ABCD).

b) (HIK) // (ABCD).

c) Tứ giác ABMS là hình bình hành.

d) (SMN) cắt (HIK).

Xem đáp án » 29/05/2025 21

Câu 6:

Mệnh đề nào sau đây là sai?

Xem đáp án » 29/05/2025 18
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay