Câu hỏi:

29/05/2025 39

PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi H, I, K lần lượt là trung điểm của SA, SB, SC. Gọi M là giao điểm của AI và KD, N là giao điểm của DH và CI. Khi đó:

a) HI // (ABCD).

b) (HIK) // (ABCD).

c) Tứ giác ABMS là hình bình hành.

d) (SMN) cắt (HIK).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Khi đó:  a) HI // (ABCD). (ảnh 1)

a) H, I lần lượt là trung điểm của SA, SB nên HI là đường trung bình của tam giác SAB.

Suy ra HI // AB mà AB Ì (ABCD) nên HI // (ABCD) (1).

b) I, K lần lượt là trung điểm của SB, SC nên IK là đường trung bình của tam giác SBC.

Suy ra IK // BC mà BC Ì (ABCD) nên IK // (ABCD) (2).

Từ (1) và (2), suy ra (HIK) // (ABCD).

c) \(\begin{array}{l}{\rm{ V\`i }}\left\{ {\begin{array}{*{20}{l}}{M \in AI,AI \subset (SAB)}\\{M \in DK,DK \subset (SCD)}\end{array} \Rightarrow M \in (SAB) \cap (SCD)} \right.\\ \Rightarrow SM = (SAB) \cap (SCD).\end{array}\)

\({\rm{ Khi d\'o : }}\left\{ {\begin{array}{*{20}{l}}{(SAB) \cap (SCD) = SM}\\{AB \subset (SAB),CD \subset (SCD) \Rightarrow SM//AB//CD \Rightarrow SM//HI}\\{AB//CD}\end{array}} \right..\)

Mà H là trung điểm của SA nên I là trung điểm của AM.

Xét tứ giác ABMS có I là trung điểm của AM, I là trung điểm của SB nên tứ giác ABMS là hình bình hành.

d) \(\begin{array}{l}{\rm{ V\`i }}\left\{ {\begin{array}{*{20}{l}}{N \in DH,DH \subset (SAD)}\\{N \in CI,CI \subset (SBC)}\end{array} \Rightarrow N \in (SAD) \cap (SBC)} \right.\\ \Rightarrow SN = (SAD) \cap (SBC).\end{array}\)

Khi đó, ta có:

\(\left\{ {\begin{array}{*{20}{l}}{(SAD) \cap (SBC) = SN}\\{AD \subset (SAD),BC \subset (SBC) \Rightarrow SN//AD//BC \Rightarrow SN//KI}\\{AD//BC}\end{array}} \right.\).

Vì SM // HI mà HI Ì (HIK) nên SM // (HIK) (3).

Vì SN // KI mà KI Ì (HIK) nên SN // (HIK) (4).

Từ (3) và (4) suy ra (SMN) // (HIK).

Đáp án: a) Đúng;    b) Đúng;    c) Đúng;    d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

C

Cho hình chóp S.ABCD có đáy hình thang (AB // CD) và AB = 2CD. Gọi I, J lần lượt là trung điểm của SB và AB. Mặt phẳng nào song song với mặt phẳng (SAD)?   (ảnh 1)

Ta có I, J lần lượt là trung điểm của SB, AB Þ IJ là đường trung bình DSAB Þ IJ // SA.

Mà SA Ì (SAD) nên IJ // (SAD) (1).

Ta có \(AJ = \frac{1}{2}AB = CD\) và AJ // CD nên AJCD là hình bình hành Þ JC // AD.

Mà AD Ì (SAD) nên JC // (SAD) (2).

Từ (1) và (2), suy ra (IJC) // (SAD).

Câu 2

Lời giải

D

Cho hình hộp ABCD.A'B'C'D'. Khẳng định nào sau đây đúng?  	 (ảnh 1)

Ta có ABC'D' là hình bình hành nên BC' // AD' mà AD' Ì (ACD') nên BC' // (ACD').

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP