Câu hỏi:

05/06/2025 16

Khi muốn tính năm nhuận âm lịch ta lấy số năm dương lịch chia cho 19. Nếu chia hết cho 19 hoặc có số dư là 3, 6, 9, 11, 14, 17 thì năm âm lịch đó là năm nhuận và có cả tháng nhuận. Hỏi từ năm 2024 đến năm 2050 có bao nhiêu năm nhuận âm lịch theo cách tính trên.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \(X\) là tập hợp các năm nhuận âm lịch thoả mãn yêu cầu đề bài.

Khi đó các phần tử thuộc tập \(X\) được viết dưới dạng \(x = 19k + d\), với \(k,d \in \mathbb{N};\,\,d < 19\).

Ta có \(19 \cdot 106 + 10 \le 19k + d \le 19 \cdot 107 + 17\).

+) Với \(k = 106\) thì \(10 \le d \le 18\) nên chọn \(d \in \left\{ {11;14;17} \right\}\).

+) Với \(k = 107\) thì \(0 \le d \le 17\) nên chọn \(d \in \left\{ {0;3;6;9;11;14;17} \right\}\).

Do đó \(X = \left\{ {2025;2028;2031;2033;2036;2039;2042;2044;2047;2050} \right\}\).

Vậy có 10 năm nhuận âm lịch theo cách tính trên từ năm 2024 đến năm 2050.

Đáp án: \(10\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. \[G = \left[ { - 12;21} \right]\].

b) Đúng. \(H = \left[ {0\,;17} \right]\).

c) Sai. \(G \not\subset H\).

d) Đúng. \(H \subset G\).

Câu 2

Số tập con của tập hợp \(A = \left\{ {x \in \mathbb{R}|3{{\left( {{x^2} + x} \right)}^2} - 2{x^2} - 2x = 0} \right\}\) là:

Lời giải

Đáp án đúng là: A

Giải phương trình \(3{\left( {{x^2} + x} \right)^2} - 2\left( {{x^2} + x} \right) = 0\).

Đặt \({x^2} + x = t\) ta có phương trình \(3{t^2} - 2t = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = \frac{2}{3}\end{array} \right.\).

Với \(t = 0\) ta có \({x^2} + x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - 1\end{array} \right.\).

Với \(t = \frac{2}{3}\) ta có: \({x^2} + x = \frac{2}{3}\)\( \Leftrightarrow 3{x^2} + 3x - 2 = 0 \Leftrightarrow x = \frac{{ - 3 \pm \sqrt {33} }}{3}\).

Vậy A có 4 phần tử suy ra số tập con của A là \({2^4} = 16\).

Câu 6

Ký hiệu nào sau đây để chỉ \(\sqrt 5 \) không phải là một số hữu tỉ?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay