Câu hỏi:
10/06/2025 39
(0,5 điểm) Cho biểu thức \(A = 2 + {21^{23}} + {25^{125}}.\) Chứng minh rằng \(A\) là hợp số.
(0,5 điểm) Cho biểu thức \(A = 2 + {21^{23}} + {25^{125}}.\) Chứng minh rằng \(A\) là hợp số.
Quảng cáo
Trả lời:
Hướng dẫn giải
Xét biểu thức \(A = 2 + {21^{23}} + {25^{125}}.\)
Ta có \({21^{23}}\) có chữ số tận cùng là 1 (vì \[{\left( {\overline {...1} } \right)^n} = \overline {...1} ).\]
\({25^{125}}\) có chữ số tận cùng là 5 (vì \[{\left( {\overline {...5} } \right)^n} = \overline {...5} ).\]
Khi đó, \(A = 2 + {21^{23}} + {25^{125}}\) có chữ số tận cùng là: \(2 + 1 + 5 = 8\) (có dạng \(\overline {...8} )\) nên \(A\,\, \vdots \,\,2.\)
Mà \(A = 2 + {21^{23}} + {25^{125}} > 1\) và có nhiều hơn 2 ước nên \(A\) là hợp số.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \({2^9}:{2^2} + {5^4}:{5^3} \cdot {2^4} - 3 \cdot {2^5}\) \( = {2^7} + {5^2} \cdot {2^4} - 3 \cdot {2^5}\) \( = {2^5} \cdot \left( {{2^2} - 3} \right) + {5^2} \cdot {2^4}\) \( = 32 \cdot 1 + 400 = 432.\) |
b) \[26 \cdot 7 - 17 \cdot 9 + 13 \cdot 26 - 17 \cdot 11\] \[ = \left( {26 \cdot 7 + 13 \cdot 26} \right) - \left( {17 \cdot 9 + 17 \cdot 11} \right)\] \[ = 26 \cdot \left( {7 + 13} \right) - 17 \cdot \left( {9 + 11} \right)\] \[ = 26 \cdot 20 - 17 \cdot 20\] \[ = 20 \cdot \left( {26 - 17} \right)\] \[ = 20 \cdot 9 = 180.\] |
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Khi thêm I vào phía trước số La Mã XX, ta được IXX là sai với quy tắc.
Vậy không thể thêm vào như thế vì trái với quy tắc viết số La Mã. Ta chọn phương án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.