Câu hỏi:

18/06/2025 33

\[\lim \frac{{\sqrt {4{n^2} + 1} - \sqrt {n + 2} }}{{2n - 3}}\] bằng     

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

C

Ta có: \[\lim \frac{{\sqrt {4{n^2} + 1}  - \sqrt {n + 2} }}{{2n - 3}}\]\[ = \lim \frac{{\sqrt {4 + \frac{1}{{{n^2}}}}  - \sqrt {\frac{1}{n} + \frac{2}{{{n^2}}}} }}{{2 - \frac{3}{n}}}\]\[ = \frac{{2 - 0}}{2}\]\[ = 1\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

D

(I) \(\lim {n^k} =  + \infty \) với \(k\) nguyên dương \[ \Rightarrow \left( I \right)\] là khẳng định đúng.

(II) \(\lim {q^n} =  + \infty \) nếu \(\left| q \right| < 1\)\[ \Rightarrow \left( {II} \right)\] là khẳng định sai vì \(\lim {q^n} = 0\) nếu \(\left| q \right| < 1\).

(III) \(\lim {q^n} =  + \infty \) nếu \(q > 1\)\[ \Rightarrow \left( {III} \right)\] là khẳng định đúng.

Vậy số khẳng định đúng là \[2\].

Câu 2

Lời giải

B

\(\lim \frac{{{{100}^{n + 1}} + {{3.99}^n}}}{{{{10}^{2n}} - {{2.98}^{n + 1}}}} = \lim {\frac{{100 + 3.\left( {\frac{{99}}{{100}}} \right)}}{{1 - 2.98.{{\left( {\frac{{98}}{{100}}} \right)}^n}}}^n} = 100\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP