Câu hỏi:

18/06/2025 6

Từ một hình vuông có diện tích là 1 m2. Gọi M, N, P, Q lần lượt là trung điểm bốn cạnh của hình vuông, bạn Hùng dùng bút chì nối 4 điểm M, N, P, Q với nhau để được hình vuông thứ hai. Bạn Hùng lại tiếp tục vẽ theo bốn trung điểm các cạnh của hình vuông MNPQ để được hình vuông thứ ba, cứ tiếp tục như vậy. Tính tổng diện tích tất cả các hình vuông đã có.     

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

B

Đặt a = 1 là độ dài cạnh hình vuông, S1 = 1 là diện tích hình vuông ban đầu.

Do M, N là trung điểm hai cạnh của hình vuông nên \(MN = \frac{{a\sqrt 2 }}{2}\).

Suy ra \({S_2} = M{N^2} = \frac{{{a^2}}}{2} = \frac{{{S_1}}}{2} = \frac{1}{2}\).

Lại lấy trung điểm các cạnh của hình vuông MNPQ để tiếp tục, khi đó, hình vuông mới sinh ra có diện tích là \({S_3} = {\left( {\frac{{MN\sqrt 2 }}{2}} \right)^2} = \frac{{M{N^2}}}{2} = \frac{{{S_1}}}{4} = \frac{1}{4}\).

Vậy các hình vuông sinh ra có diện tích lần lượt là \(1;\frac{1}{2};\frac{1}{4};...;\frac{1}{{{2^n}}};...\)

Vậy tổng diện tích các hình vuông tạo thành là \(S = 1.\frac{1}{{1 - \frac{1}{2}}} = 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có: \(\mathop {\lim }\limits_{n \to  + \infty } \frac{{2{n^2} + 1}}{{3{n^3} - 3n + 3}} = \mathop {\lim }\limits_{n \to  + \infty } \frac{{{n^3}\left( {\frac{2}{n} + \frac{1}{{{n^3}}}} \right)}}{{{n^3}\left( {3 - \frac{3}{{{n^2}}} + \frac{3}{{{n^3}}}} \right)}} = \mathop {\lim }\limits_{n \to  + \infty } \frac{{\frac{2}{n} + \frac{1}{{{n^3}}}}}{{3 - \frac{3}{{{n^2}}} + \frac{3}{{{n^3}}}}} = \frac{0}{3} = 0\).

b) Ta có: \(\mathop {\lim }\limits_{n \to  + \infty } \frac{{n\sqrt {{n^2} + 1} }}{{\sqrt {4{n^4} - {n^2} + 3} }} = \mathop {\lim }\limits_{n \to  + \infty } \frac{{{n^2}\sqrt {1 + \frac{1}{{{n^2}}}} }}{{{n^2}\sqrt {4 - \frac{1}{{{n^2}}} + \frac{3}{{{n^4}}}} }} = \mathop {\lim }\limits_{n \to  + \infty } \frac{{\sqrt {1 + \frac{1}{{{n^2}}}} }}{{\sqrt {4 - \frac{1}{{{n^2}}} + \frac{3}{{{n^4}}}} }} = \frac{1}{2}\).

c) Phương trình lượng giác \(\cos x = 0\) có một nghiệm là \(x = \frac{\pi }{2}\).

d) Cho cấp số cộng \(\left( {{u_n}} \right)\) với công sai \(d = \frac{1}{2}\) và \({u_1} = 0\), thì \({u_3} = 0 + 2.\frac{1}{2} = 1\).

Đáp án: a) Sai;    b) Đúng; c) Đúng; d) Sai.

Lời giải

Ta có 0,511111... = 0,5 + 0,01 + 0,001 + 0,0001 + ...

Xét tổng 0,01 + 0,001 + 0,0001 + ....

Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu là u1 = 0,01 và công bội \(q = \frac{1}{{10}}\).

Vì vậy  0,511111... = 0,5 + 0,01 + 0,001 + 0,0001 + ... = \(0,5 + \frac{{0,01}}{{1 - \frac{1}{{10}}}} = \frac{{23}}{{45}}\).

Suy ra \(a = 23;b = 45\). Khi đó |b – 2a| = 1.

Trả lời: 1.

Câu 3

\(\lim \frac{{{{100}^{n + 1}} + {{3.99}^n}}}{{{{10}^{2n}} - {{2.98}^{n + 1}}}}\)     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho \(S = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + ...\)\(T = 1 + \frac{1}{3} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{3^n}}} + ...\). Khi đó:

a) \(S = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + ...\) là tổng của cấp số nhân lùi vô hạn có công bội \(q = - \frac{1}{2}\).

b) \(T = 1 + \frac{1}{3} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{3^n}}} + ...\) là tổng của câp số nhân lùi vô hạn có công bội \(q = \frac{1}{3}\).

c) S > T.

d) \(S = \frac{1}{T}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay