Câu hỏi:

18/06/2025 8

Bạn An thả quả bóng từ độ cao 6 m so với mặt đất xuống theo phương thẳng đứng sau đó bóng nảy lên rồi lại rơi xuống cứ như vật cho đến khi bóng dừng lại trên mặt đất. Tính quãng đường mà bóng đã di chuyển biết rằng sau mỗi lần chạm đất bóng lại nảy lên đến độ cao bằng \(\frac{3}{4}\) độ cao của lần ngay trước đó.    

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

D

Ta thấy độ cao của quả bóng mỗi lần bóng đi xuống là một cấp số nhân với \({u_1} = 6;q = \frac{3}{4}\).

Tổng của cấp số nhân lùi vô hạn đó là quãng đường mà quả bóng đã đi xuống.

Khi đó \(S = \frac{{{u_1}}}{{1 - q}} = \frac{6}{{1 - \frac{3}{4}}} = 24\) m.

Quãng đường bóng đã đi cho đến khi dừng lại là: 2S – 6 = 2.24 – 6 = 42 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có: \(\mathop {\lim }\limits_{n \to  + \infty } \frac{{2{n^2} + 1}}{{3{n^3} - 3n + 3}} = \mathop {\lim }\limits_{n \to  + \infty } \frac{{{n^3}\left( {\frac{2}{n} + \frac{1}{{{n^3}}}} \right)}}{{{n^3}\left( {3 - \frac{3}{{{n^2}}} + \frac{3}{{{n^3}}}} \right)}} = \mathop {\lim }\limits_{n \to  + \infty } \frac{{\frac{2}{n} + \frac{1}{{{n^3}}}}}{{3 - \frac{3}{{{n^2}}} + \frac{3}{{{n^3}}}}} = \frac{0}{3} = 0\).

b) Ta có: \(\mathop {\lim }\limits_{n \to  + \infty } \frac{{n\sqrt {{n^2} + 1} }}{{\sqrt {4{n^4} - {n^2} + 3} }} = \mathop {\lim }\limits_{n \to  + \infty } \frac{{{n^2}\sqrt {1 + \frac{1}{{{n^2}}}} }}{{{n^2}\sqrt {4 - \frac{1}{{{n^2}}} + \frac{3}{{{n^4}}}} }} = \mathop {\lim }\limits_{n \to  + \infty } \frac{{\sqrt {1 + \frac{1}{{{n^2}}}} }}{{\sqrt {4 - \frac{1}{{{n^2}}} + \frac{3}{{{n^4}}}} }} = \frac{1}{2}\).

c) Phương trình lượng giác \(\cos x = 0\) có một nghiệm là \(x = \frac{\pi }{2}\).

d) Cho cấp số cộng \(\left( {{u_n}} \right)\) với công sai \(d = \frac{1}{2}\) và \({u_1} = 0\), thì \({u_3} = 0 + 2.\frac{1}{2} = 1\).

Đáp án: a) Sai;    b) Đúng; c) Đúng; d) Sai.

Lời giải

Ta có 0,511111... = 0,5 + 0,01 + 0,001 + 0,0001 + ...

Xét tổng 0,01 + 0,001 + 0,0001 + ....

Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu là u1 = 0,01 và công bội \(q = \frac{1}{{10}}\).

Vì vậy  0,511111... = 0,5 + 0,01 + 0,001 + 0,0001 + ... = \(0,5 + \frac{{0,01}}{{1 - \frac{1}{{10}}}} = \frac{{23}}{{45}}\).

Suy ra \(a = 23;b = 45\). Khi đó |b – 2a| = 1.

Trả lời: 1.

Câu 3

Cho \(S = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + ...\)\(T = 1 + \frac{1}{3} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{3^n}}} + ...\). Khi đó:

a) \(S = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + ...\) là tổng của cấp số nhân lùi vô hạn có công bội \(q = - \frac{1}{2}\).

b) \(T = 1 + \frac{1}{3} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{3^n}}} + ...\) là tổng của câp số nhân lùi vô hạn có công bội \(q = \frac{1}{3}\).

c) S > T.

d) \(S = \frac{1}{T}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

\(\lim \frac{{{{100}^{n + 1}} + {{3.99}^n}}}{{{{10}^{2n}} - {{2.98}^{n + 1}}}}\)     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

\(\lim \frac{1}{{5n + 2}}\) bằng     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay