Bạn An thả quả bóng từ độ cao 6 m so với mặt đất xuống theo phương thẳng đứng sau đó bóng nảy lên rồi lại rơi xuống cứ như vật cho đến khi bóng dừng lại trên mặt đất. Tính quãng đường mà bóng đã di chuyển biết rằng sau mỗi lần chạm đất bóng lại nảy lên đến độ cao bằng \(\frac{3}{4}\) độ cao của lần ngay trước đó.
Quảng cáo
Trả lời:
D
Ta thấy độ cao của quả bóng mỗi lần bóng đi xuống là một cấp số nhân với \({u_1} = 6;q = \frac{3}{4}\).
Tổng của cấp số nhân lùi vô hạn đó là quãng đường mà quả bóng đã đi xuống.
Khi đó \(S = \frac{{{u_1}}}{{1 - q}} = \frac{6}{{1 - \frac{3}{4}}} = 24\) m.
Quãng đường bóng đã đi cho đến khi dừng lại là: 2S – 6 = 2.24 – 6 = 42 m.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
B
\(\lim \frac{{{{100}^{n + 1}} + {{3.99}^n}}}{{{{10}^{2n}} - {{2.98}^{n + 1}}}} = \lim {\frac{{100 + 3.\left( {\frac{{99}}{{100}}} \right)}}{{1 - 2.98.{{\left( {\frac{{98}}{{100}}} \right)}^n}}}^n} = 100\).
Lời giải
D
(I) \(\lim {n^k} = + \infty \) với \(k\) nguyên dương \[ \Rightarrow \left( I \right)\] là khẳng định đúng.
(II) \(\lim {q^n} = + \infty \) nếu \(\left| q \right| < 1\)\[ \Rightarrow \left( {II} \right)\] là khẳng định sai vì \(\lim {q^n} = 0\) nếu \(\left| q \right| < 1\).
(III) \(\lim {q^n} = + \infty \) nếu \(q > 1\)\[ \Rightarrow \left( {III} \right)\] là khẳng định đúng.
Vậy số khẳng định đúng là \[2\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Cho \(S = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + ...\) và \(T = 1 + \frac{1}{3} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{3^n}}} + ...\). Khi đó:
a) \(S = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + ...\) là tổng của cấp số nhân lùi vô hạn có công bội \(q = - \frac{1}{2}\).
b) \(T = 1 + \frac{1}{3} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{3^n}}} + ...\) là tổng của câp số nhân lùi vô hạn có công bội \(q = \frac{1}{3}\).
c) S > T.
d) \(S = \frac{1}{T}\).
Cho \(S = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + ...\) và \(T = 1 + \frac{1}{3} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{3^n}}} + ...\). Khi đó:
a) \(S = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + ...\) là tổng của cấp số nhân lùi vô hạn có công bội \(q = - \frac{1}{2}\).
b) \(T = 1 + \frac{1}{3} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{3^n}}} + ...\) là tổng của câp số nhân lùi vô hạn có công bội \(q = \frac{1}{3}\).
c) S > T.
d) \(S = \frac{1}{T}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.