Tìm \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 3x + 5} }}{{4x - 1}}\).
Quảng cáo
Trả lời:

A
Ta có \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 3x + 5} }}{{4x - 1}}\)\( = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - \sqrt {1 + \frac{3}{x} + \frac{5}{{{x^2}}}} }}{{4 - \frac{1}{x}}} = - \frac{1}{4}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
C
\(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{x + 2}}{{x - 1}} = - \infty \) vì \[\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to 1} \left( {x + 2} \right) = 3 > 0\\\mathop {\lim }\limits_{x \to 1} \left( {x - 1} \right) = 0\\x - 1 < 0,\forall x < 1\end{array} \right.\].
Lời giải
\(\mathop {\lim }\limits_{x \to 3} \frac{{2{x^2} - 5x - 3}}{{\sqrt {5x + 1} - 4}}\)\( = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {2x + 1} \right)\left( {x - 3} \right)\left( {\sqrt {5x + 1} + 4} \right)}}{{5\left( {x - 3} \right)}}\)
\( = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {2x + 1} \right)\left( {\sqrt {5x + 1} + 4} \right)}}{5} = \frac{{56}}{5} = 11,2\).
Trả lời: 11,2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.