Câu hỏi:

18/06/2025 134 Lưu

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} - 3x + 1\;\;khi\;\;x < 0\\\sqrt {{x^2} + 1} \;\;\;\;\;\;khi\;\;x \ge 0\end{array} \right.\). Khi đó:

a) Giới hạn \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = - 1\).

b) Giới hạn \(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - 1\).

c) Giới hạn \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = 1\).

d) Giới hạn \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = 1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \sqrt {{x^2} + 1}  = \sqrt 5 \).

b) \(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {{x^2} - 3x + 1} \right) = 1\).

c) \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \sqrt {{x^2} + 1}  = 1\).

d) Do \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right)\) nên \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = 1\).

Đáp án: a) Sai;  b) Sai;   c) Đúng;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\frac{1}{2}\].         
B. \[ - \frac{1}{2}\].      
C. \[\frac{3}{2}\]                   
D. \[ - \frac{3}{2}\].

Lời giải

D

Ta có: \[\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \frac{{\sqrt {3{x^2} + 1}  - x}}{{x - 1}} = \frac{{\sqrt 4  + 1}}{{ - 1 - 1}} =  - \frac{3}{2}\].

Lời giải

\(\mathop {\lim }\limits_{x \to 3} \frac{{2{x^2} - 5x - 3}}{{\sqrt {5x + 1}  - 4}}\)\( = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {2x + 1} \right)\left( {x - 3} \right)\left( {\sqrt {5x + 1}  + 4} \right)}}{{5\left( {x - 3} \right)}}\)

\( = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {2x + 1} \right)\left( {\sqrt {5x + 1}  + 4} \right)}}{5} = \frac{{56}}{5} = 11,2\).

Trả lời: 11,2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 0.                              
B. \[\frac{{ - 1}}{7}\].   
C. −7.                                     
D. +∞.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[ + \infty \].             
B. \[\frac{1}{2}\].         
C. \[ - \infty \]  
D. \[ - \frac{1}{2}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. −∞.                           
B. 1.                              
C. +∞.                                    
D. −1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(0\).                         
B. \( + \infty \).             
C. \( - \infty \). 
D. \( - 4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP