Câu hỏi:

18/06/2025 50

Cho hàm số f(x) = x2 – 3x + 2.

a) \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{x - 1}} = - 1\).

b) \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{{x^2} - 1}} = \frac{1}{4}\).

c) \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{{x^3} - {x^2} + x - 1}} > 0\).

d) Để \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{ax + b}} = 2\) thì a + 3b = 1.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 3x + 2}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \left( {x - 2} \right) =  - 1\).

b) \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 3x + 2}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{x - 2}}{{x + 1}} =  - \frac{1}{2}\).

c) \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{{x^3} - {x^2} + x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + 1} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{x - 2}}{{{x^2} + 1}} =  - \frac{1}{2} < 0\).

d) Để \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{ax + b}} = 2\) thì ax + b có nghiệm bằng 1 Û a + b = 0 Û b = −a.

Khi đó \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{ax + b}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{a\left( {x - 1} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{x - 2}}{a} =  - \frac{1}{a} = 2\) \( \Leftrightarrow a =  - \frac{1}{2} \Rightarrow b = \frac{1}{2}\).

Suy ra \(a + 3b =  - \frac{1}{2} + 3.\frac{1}{2} = 1\).

Đáp án: a) Đúng;  b) Sai;   c) Sai;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

C

\(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{x + 2}}{{x - 1}} =  - \infty \) vì \[\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to 1} \left( {x + 2} \right) = 3 > 0\\\mathop {\lim }\limits_{x \to 1} \left( {x - 1} \right) = 0\\x - 1 < 0,\forall x < 1\end{array} \right.\].

Lời giải

\(\mathop {\lim }\limits_{x \to 3} \frac{{2{x^2} - 5x - 3}}{{\sqrt {5x + 1}  - 4}}\)\( = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {2x + 1} \right)\left( {x - 3} \right)\left( {\sqrt {5x + 1}  + 4} \right)}}{{5\left( {x - 3} \right)}}\)

\( = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {2x + 1} \right)\left( {\sqrt {5x + 1}  + 4} \right)}}{5} = \frac{{56}}{5} = 11,2\).

Trả lời: 11,2.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP