Câu hỏi:
18/06/2025 6PHẦN II. TRẢ LỜI NGẮN
Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ khi t dần về dương vô cùng (đơn vị: gam/lít) là bao nhiêu?
Quảng cáo
Trả lời:
Sau t phút bơm nước vào hồ thì lượng nước là 600 + 15t (lít) và lượng muối có được là 30.15t gam.
Nồng độ muối của nước là \(C\left( t \right) = \frac{{30.15t}}{{600 + 15t}} = \frac{{30t}}{{40 + t}}\) (gam/lít).
Khi t dần về dương vô cùng, ta có \(\mathop {\lim }\limits_{t \to + \infty } C\left( t \right) = \mathop {\lim }\limits_{t \to + \infty } \frac{{30t}}{{40 + t}} = \mathop {\lim }\limits_{t \to + \infty } \frac{{30}}{{\frac{{40}}{t} + 1}} = 30\) (gam/lít).
Trả lời: 30.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \(f\left( 8 \right) = \frac{{\sqrt {8 + 1} - 2}}{{8 - 3}} = \frac{1}{5}\).
b) \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {x + 1} - 2}}{{x - 3}} = \frac{1}{3}\).
c) \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = \mathop {\lim }\limits_{x \to 3} \frac{{x - 3}}{{\left( {\sqrt {x + 1} + 2} \right)\left( {x - 3} \right)}} = \mathop {\lim }\limits_{x \to 3} \frac{1}{{\sqrt {x + 1} + 2}} = \frac{1}{4}\).
d) \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{x\sqrt {\frac{1}{x} + \frac{1}{{{x^2}}}} - 2}}{{x - 3}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {\frac{1}{x} + \frac{1}{{{x^2}}}} - \frac{2}{x}}}{{1 - \frac{3}{x}}} = 0\).
\(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x + 2} - x} \right)\)\( = \mathop {\lim }\limits_{x \to + \infty } \frac{{x + 2}}{{\sqrt {{x^2} + x + 2} + x}}\)\( = \mathop {\lim }\limits_{x \to + \infty } \frac{{1 + \frac{2}{x}}}{{\sqrt {1 + \frac{1}{x} + \frac{2}{{{x^2}}}} + 1}} = \frac{1}{2}\).
Do đó 3a + 4b = 2.
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Lời giải
\(\mathop {\lim }\limits_{x \to 3} \frac{{2{x^2} - 5x - 3}}{{\sqrt {5x + 1} - 4}}\)\( = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {2x + 1} \right)\left( {x - 3} \right)\left( {\sqrt {5x + 1} + 4} \right)}}{{5\left( {x - 3} \right)}}\)
\( = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {2x + 1} \right)\left( {\sqrt {5x + 1} + 4} \right)}}{5} = \frac{{56}}{5} = 11,2\).
Trả lời: 11,2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
33 câu trắc nghiệm Toán 11 Kết nối tri thức Bài 29: Công thức cộng xác suất có đáp án
10 Bài tập Biểu diễn góc lượng giác trên đường tròn lượng giác (có lời giải)