Có bao nhiêu giá trị nguyên của tham số m để \(\mathop {\lim }\limits_{x \to - \infty } \left[ {\left( {{m^2} - 4m + 3} \right){x^4} - x + 2025} \right] = - \infty \).
Có bao nhiêu giá trị nguyên của tham số m để \(\mathop {\lim }\limits_{x \to - \infty } \left[ {\left( {{m^2} - 4m + 3} \right){x^4} - x + 2025} \right] = - \infty \).
Quảng cáo
Trả lời:

Ta có \(\mathop {\lim }\limits_{x \to - \infty } \left[ {\left( {{m^2} - 4m + 3} \right){x^4} - x + 2025} \right] = - \infty \)
\( \Leftrightarrow \mathop {\lim }\limits_{x \to - \infty } {x^4}\left[ {\left( {{m^2} - 4m + 3} \right) - \frac{1}{{{x^3}}} + \frac{{2025}}{{{x^4}}}} \right] = - \infty \).
Vì \(\mathop {\lim }\limits_{x \to - \infty } {x^4} = + \infty \) và \(\mathop {\lim }\limits_{x \to - \infty } \left( {{m^2} - 4m + 3 - \frac{1}{{{x^3}}} + \frac{{2025}}{{{x^4}}}} \right) = {m^2} - 4m + 3\).
Để \(\mathop {\lim }\limits_{x \to - \infty } {x^4}\left[ {\left( {{m^2} - 4m + 3} \right) - \frac{1}{{{x^3}}} + \frac{{2025}}{{{x^4}}}} \right] = - \infty \)thì m2 – 4m + 3 < 0 Û 1 < m < 3.
Mà m Î ℤ nên m = 2.
Vậy có 1 giá trị nguyên.
Trả lời: 1.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
C
\(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{x + 2}}{{x - 1}} = - \infty \) vì \[\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to 1} \left( {x + 2} \right) = 3 > 0\\\mathop {\lim }\limits_{x \to 1} \left( {x - 1} \right) = 0\\x - 1 < 0,\forall x < 1\end{array} \right.\].
Lời giải
\(\mathop {\lim }\limits_{x \to 3} \frac{{2{x^2} - 5x - 3}}{{\sqrt {5x + 1} - 4}}\)\( = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {2x + 1} \right)\left( {x - 3} \right)\left( {\sqrt {5x + 1} + 4} \right)}}{{5\left( {x - 3} \right)}}\)
\( = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {2x + 1} \right)\left( {\sqrt {5x + 1} + 4} \right)}}{5} = \frac{{56}}{5} = 11,2\).
Trả lời: 11,2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.