Biết \(\mathop {\lim }\limits_{x \to 3} \frac{{\sqrt {x + 1} - 2}}{{x - 3}} = \frac{a}{{{b^2}}}\) (\(\frac{a}{b}\) là phân số tối giản). Tính \(\sqrt a + b + 2018\).
Quảng cáo
Trả lời:
\(\mathop {\lim }\limits_{x \to 3} \frac{{\sqrt {x + 1} - 2}}{{x - 3}}\)\( = \mathop {\lim }\limits_{x \to 3} \frac{{x - 3}}{{\left( {x - 3} \right)\left( {\sqrt {x + 1} + 2} \right)}}\)\( = \mathop {\lim }\limits_{x \to 3} \frac{1}{{\sqrt {x + 1} + 2}}\)\( = \frac{1}{{{2^2}}}\).
Suy ra \[a = 1;\,b = 2\].
\(\sqrt a + b + 2018 = 1 + 2 + 2018 = 2021\).
Trả lời: 2021.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
C
\(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{x + 2}}{{x - 1}} = - \infty \) vì \[\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to 1} \left( {x + 2} \right) = 3 > 0\\\mathop {\lim }\limits_{x \to 1} \left( {x - 1} \right) = 0\\x - 1 < 0,\forall x < 1\end{array} \right.\].
Câu 2
Lời giải
D
Ta có: \[\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \frac{{\sqrt {3{x^2} + 1} - x}}{{x - 1}} = \frac{{\sqrt 4 + 1}}{{ - 1 - 1}} = - \frac{3}{2}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.