Câu hỏi:

18/06/2025 37 Lưu

Cho hàm số \(f(x) = \left\{ \begin{array}{l}\frac{{{x^2} - 1}}{{x - 1}} & {\rm{khi}}\,x \ne 1\\a - 1 & {\rm{khi}}\,x = 1\end{array} \right.\left( {a \in \mathbb{R}} \right)\).

a) Hàm số đã cho liên tục trên khoảng (−∞; 1).

b) Hàm số đã cho có tập xác định là ℝ.

c) Với a = 3 thì hàm số đã cho liên tục trên ℝ.

d) \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = 1\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Với x < 1 hàm số \(f\left( x \right) = \frac{{{x^2} - 1}}{{x - 1}}\) liên tục.

b) Hàm số có tập xác định ℝ.

c) Với a = 3 thì f(1) = 2.

Ta có \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \left( {x + 1} \right) = 2\).

Suy ra \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\) nên hàm số đã cho liên tục trên ℝ.

d) \[\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} f\left( x \right) = 2\].

Đáp án: a) Đúng;    b) Đúng; c) Đúng; d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \[\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {2x - 1}  - 1}}{{x - 1}}\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{{2\left( {x - 1} \right)}}{{\left( {\sqrt {2x - 1}  + 1} \right)\left( {x - 1} \right)}}\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{2}{{\sqrt {2x - 1}  + 1}} = 1\].

Để hàm số liên tục tại x = 1 thì \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\) Û m – 2024 = 1 Û m = 2025.

Trả lời: 2025.

Câu 2

Lời giải

A

Hàm số \(y = \frac{{3x - 4}}{{x - 2}}\) có tập xác định D = ℝ\{2}. Do đó hàm số gián đoạn tại x = 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP