Cho \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = - 2\). Giá trị \(\mathop {\lim }\limits_{x \to 3} \left[ {f\left( x \right) + 4x - 1} \right]\) bằng
Quảng cáo
Trả lời:
D
\(\mathop {\lim }\limits_{x \to 3} \left[ {f\left( x \right) + 4x - 1} \right]\)\( = \mathop {\lim }\limits_{x \to 3} f\left( x \right) + \mathop {\lim }\limits_{x \to 3} \left( {4x - 1} \right) = - 2 + 4.3 - 1 = 9\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Diện tích của hình tròn bán kính R là S1 = πR2 (cm2).
Diện tích của hình tròn bán kính \(\frac{R}{2}\) là \({S_2} = \pi .{\left( {\frac{R}{2}} \right)^2}\) (cm2).
Diện tích của hình tròn bán kính \(\frac{R}{4}\) là \({S_3} = \pi .{\left( {\frac{R}{4}} \right)^2}\) (cm2).
Tổng diện tích của các hình tròn là: \({S_n} = {S_1} + 2{S_2} + 4{S_3} + ... = \pi {R^2} + \pi {R^2}\frac{1}{2} + \pi {R^2}\frac{1}{4} + ...\)
Tổng trên là tổng của cấp số nhân lùi vô hạn có số hạng đầu u1 = πR2 và công bội \(q = \frac{1}{2}\)
nên \({S_n} = \frac{{\pi {R^2}}}{{1 - \frac{1}{2}}} = 2\pi {R^2}\). Suy ra a = 2.
Trả lời: 2.
Lời giải
a) Với t = 0 Þ T(t) = 20.
b) Với t = 10 Þ T(t) = 20 + 4.10 = 60.
c) Ta có T(70) = 20 + 4.70 = 300.
\(\mathop {\lim }\limits_{t \to {{70}^ - }} T\left( t \right) = \mathop {\lim }\limits_{t \to {{70}^ - }} \left( {20 + 4t} \right) = 300\); \(\mathop {\lim }\limits_{t \to {{70}^ + }} T\left( t \right) = \mathop {\lim }\limits_{t \to {{70}^ + }} \left( {a - 2t} \right) = a - 140\).
Nếu a = 300°C thì \(\mathop {\lim }\limits_{t \to {{70}^ + }} T\left( t \right) = 300 - 140 = 160 \ne \mathop {\lim }\limits_{t \to {{70}^ - }} T\left( t \right)\).
Do đó hàm số không liên tục tại t = 70.
Vậy T(t) không liên tục trên tập xác định với ∀a Î ℝ.
d) Với a = 440°C thì \(\mathop {\lim }\limits_{t \to {{70}^ - }} T\left( t \right) = \mathop {\lim }\limits_{t \to {{70}^ + }} T\left( t \right) = T\left( {70} \right) = 300\).
Do đó với a = 440°C thì hàm số liên tục trên tập xác định.
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Biết giới hạn \(\mathop {\lim }\limits_{n \to + \infty } \frac{{ - 3{n^3} + 1}}{{2n + 5}} = a\) và \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{{( - 1)}^n} \cdot {5^n}}}{{{2^n} + {5^{2n}}}} = b\). Khi đó:
a) \(\mathop {\lim }\limits_{n \to + \infty } \left( { - 3{n^2} + \frac{1}{n}} \right) = a\).
b) \(x = b\) là hoành độ giao điểm của đường thẳng \(y = 2x\) với trục hoành.
c) \(\mathop {\lim }\limits_{n \to + \infty } {\left( {\frac{1}{{2024}}} \right)^n} = b\).
d) Cho cấp số cộng \(\left( {{u_n}} \right)\) với công sai \(d = \frac{1}{2}\) và \({u_1} = b\), thì \({u_3} = 2\).
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Biết giới hạn \(\mathop {\lim }\limits_{n \to + \infty } \frac{{ - 3{n^3} + 1}}{{2n + 5}} = a\) và \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{{( - 1)}^n} \cdot {5^n}}}{{{2^n} + {5^{2n}}}} = b\). Khi đó:
a) \(\mathop {\lim }\limits_{n \to + \infty } \left( { - 3{n^2} + \frac{1}{n}} \right) = a\).
b) \(x = b\) là hoành độ giao điểm của đường thẳng \(y = 2x\) với trục hoành.
c) \(\mathop {\lim }\limits_{n \to + \infty } {\left( {\frac{1}{{2024}}} \right)^n} = b\).
d) Cho cấp số cộng \(\left( {{u_n}} \right)\) với công sai \(d = \frac{1}{2}\) và \({u_1} = b\), thì \({u_3} = 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
