Câu hỏi:

18/06/2025 10

Tính giới hạn \(I = \mathop {\lim }\limits_{x \to - \infty } \frac{{3x - 2}}{{2x + 1}}\).     

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

D

\(I = \mathop {\lim }\limits_{x \to  - \infty } \frac{{3x - 2}}{{2x + 1}}\)\( = \mathop {\lim }\limits_{x \to  - \infty } \frac{{x\left( {3 - \frac{2}{x}} \right)}}{{x\left( {2 + \frac{1}{x}} \right)}} = \frac{3}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI

Biết giới hạn \(\mathop {\lim }\limits_{n \to + \infty } \frac{{ - 3{n^3} + 1}}{{2n + 5}} = a\)\(\mathop {\lim }\limits_{n \to + \infty } \frac{{{{( - 1)}^n} \cdot {5^n}}}{{{2^n} + {5^{2n}}}} = b\). Khi đó:

a) \(\mathop {\lim }\limits_{n \to + \infty } \left( { - 3{n^2} + \frac{1}{n}} \right) = a\).

b) \(x = b\) là hoành độ giao điểm của đường thẳng \(y = 2x\) với trục hoành.

c) \(\mathop {\lim }\limits_{n \to + \infty } {\left( {\frac{1}{{2024}}} \right)^n} = b\).

d) Cho cấp số cộng \(\left( {{u_n}} \right)\) với công sai \(d = \frac{1}{2}\)\({u_1} = b\), thì \({u_3} = 2\).

Lời giải

Ta có: \(\mathop {\lim }\limits_{n \to  + \infty } \frac{{ - 3{n^3} + 1}}{{2n + 5}} = \mathop {\lim }\limits_{n \to  + \infty } \frac{{n\left( { - 3{n^2} + \frac{1}{n}} \right)}}{{n\left( {2 + \frac{5}{n}} \right)}} = \mathop {\lim }\limits_{n \to  + \infty } \frac{{ - 3{n^2} + \frac{1}{n}}}{{2 + \frac{5}{n}}} =  - \infty \),

do \(\left\{ {\begin{array}{*{20}{l}}{\mathop {\lim }\limits_{n \to  + \infty } \left( { - 3{n^2} + \frac{1}{n}} \right) =  - \infty }\\{\mathop {\lim }\limits_{n \to  + \infty } \left( {2 + \frac{5}{n}} \right) = 2}\end{array}} \right.\)

\(\mathop {\lim }\limits_{n \to  + \infty } \frac{{{{( - 1)}^n} \cdot {5^n}}}{{{2^n} + {5^{2n}}}} = \mathop {\lim }\limits_{n \to  + \infty } \frac{{{{( - 1)}^n} \cdot {5^n}}}{{{2^n} + {{25}^n}}} = \mathop {\lim }\limits_{n \to  + \infty } \frac{{{{25}^n} \cdot {{\left( {\frac{{ - 1}}{5}} \right)}^n}}}{{{{25}^n}\left[ {{{\left( {\frac{2}{{25}}} \right)}^n} + 1} \right]}} = \mathop {\lim }\limits_{n \to  + \infty } \frac{{{{\left( {\frac{{ - 1}}{5}} \right)}^n}}}{{{{\left( {\frac{2}{{25}}} \right)}^n} + 1}} = 0\).

a) \(\mathop {\lim }\limits_{n \to  + \infty } \frac{{ - 3{n^3} + 1}}{{2n + 5}} = \mathop {\lim }\limits_{n \to  + \infty } \left( { - 3{n^2} + \frac{1}{n}} \right) =  - \infty \).

b) x = 0 là hoành độ giao điểm của đường thẳng \(y = 2x\) với trục hoành.

c) \(\mathop {\lim }\limits_{n \to  + \infty } {\left( {\frac{1}{{2024}}} \right)^n} = b\).

d) u1 = 0; u3 = 0 + 2d = 1.

Đáp án: a) Đúng;   b) Đúng;   c) Đúng;   d) Sai.

Câu 2

PHẦN I. TRẮC NGHIỆM NHIỀU LỰA CHỌN

Cho hai dãy (un) và (vn) thỏa mãn \(\lim {u_n} = \sqrt 3 \) và limvn = 2. Giá trị của \(\lim \frac{{{u_n}}}{{{v_n}}}\) bằng

Lời giải

B

\(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{{\sqrt 3 }}{2}\).

Câu 3

Tính giới hạn \(I = \lim \left( {\sqrt {{n^2} + 2n + 3} - n} \right)\).     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = - 2\). Giá trị \(\mathop {\lim }\limits_{x \to 3} \left[ {f\left( x \right) + 4x - 1} \right]\) bằng     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Tính \(\lim \left( {3 + 2n + {n^3}} \right)\).     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay