Câu hỏi:

18/06/2025 29

Giới hạn của hàm số \(L = \mathop {\lim }\limits_{x \to 5} \frac{{\sqrt {x + 4} - 3}}{{{x^2} - 25}} = \frac{a}{b}\) (\(\frac{a}{b}\) là phân số tối giản). Tính a + b.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(L = \mathop {\lim }\limits_{x \to 5} \frac{{\sqrt {x + 4}  - 3}}{{{x^2} - 25}}\)\( = \mathop {\lim }\limits_{x \to 5} \frac{{x - 5}}{{\left( {{x^2} - 25} \right)\left( {\sqrt {x + 4}  + 3} \right)}}\)\( = \mathop {\lim }\limits_{x \to 5} \frac{1}{{\left( {x + 5} \right)\left( {\sqrt {x + 4}  + 3} \right)}} = \frac{1}{{60}}\).

Suy ra a = 1; b = 60. Do đó a + b = 61.

Trả lời: 61.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

A

\(I = \lim \left( {\sqrt {{n^2} + 2n + 3}  - n} \right)\)\( = \lim \frac{{2n + 3}}{{\sqrt {{n^2} + 2n + 3}  + n}}\)\( = \lim \frac{{2 + \frac{3}{n}}}{{\sqrt {1 + \frac{2}{n} + \frac{3}{{{n^2}}}}  + 1}} = 1\).

Lời giải

a) Với t = 0 Þ T(t) = 20.

b) Với t = 10 Þ T(t) = 20 + 4.10 = 60.

c) Ta có T(70) = 20 + 4.70 = 300.

\(\mathop {\lim }\limits_{t \to {{70}^ - }} T\left( t \right) = \mathop {\lim }\limits_{t \to {{70}^ - }} \left( {20 + 4t} \right) = 300\); \(\mathop {\lim }\limits_{t \to {{70}^ + }} T\left( t \right) = \mathop {\lim }\limits_{t \to {{70}^ + }} \left( {a - 2t} \right) = a - 140\).

Nếu a = 300°C thì \(\mathop {\lim }\limits_{t \to {{70}^ + }} T\left( t \right) = 300 - 140 = 160 \ne \mathop {\lim }\limits_{t \to {{70}^ - }} T\left( t \right)\).

Do đó hàm số không liên tục tại t = 70.

Vậy T(t) không liên tục trên tập xác định với ∀a Î ℝ.

d) Với a = 440°C thì \(\mathop {\lim }\limits_{t \to {{70}^ - }} T\left( t \right) = \mathop {\lim }\limits_{t \to {{70}^ + }} T\left( t \right) = T\left( {70} \right) = 300\).

Do đó với a = 440°C thì hàm số liên tục trên tập xác định.

Đáp án: a) Đúng;   b) Đúng;   c) Sai;   d) Đúng.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP