Câu hỏi:
18/06/2025 7Một quả bóng cao su được thả từ độ cao 81 m. Mỗi lần chạm đất quả bóng lại nảy lên hai phần ba độ cao của lần rơi trước. Tính tổng các khoảng cách rơi và nảy của quả bóng từ lúc thả bóng cho đến lúc bóng không nảy nữa. (đơn vị mét).
Quảng cáo
Trả lời:
Gọi ri là khoảng cách lần rơi thứ i.
Ta có r1 = 81; \({r_2} = \frac{2}{3}.81\); …; \({r_n} = {\left( {\frac{2}{3}} \right)^{n - 1}}.81\); …
Suy ra tổng các khoảng cách rơi của quả bóng từ lúc thả bóng cho đến lần rơi thứ n bằng \(81.{\frac{{1 - \left( {\frac{2}{3}} \right)}}{{1 - \frac{2}{3}}}^n}\).
Gọi ti là khoảng cách lần nảy thứ i
Ta có \({t_1} = \frac{2}{3}.81\), \({t_1} = \left( {\frac{2}{3}} \right).\frac{2}{3}81\); …; \({t_n} = {\left( {\frac{2}{3}} \right)^{n - 1}}.\frac{2}{3}81\); …
Suy ra tổng các khoảng cách nảy của quả bóng từ lúc thả bóng cho đến lần nảy thứ n bằng \(\frac{2}{3}.81.\frac{{1 - {{\left( {\frac{2}{3}} \right)}^{n - 1}}}}{{1 - \frac{2}{3}}}\).
Vậy tổng các khoảng cách rơi và nảy của quả bóng từ lúc thả bóng cho đến lúc bóng không nảy nữa bằng \(S = \mathop {\lim }\limits_{n \to + \infty } \left( {81.\frac{{1 - {{\left( {\frac{2}{3}} \right)}^n}}}{{1 - \frac{2}{3}}} + \frac{2}{3}.81.\frac{{1 - {{\left( {\frac{2}{3}} \right)}^{n - 1}}}}{{1 - \frac{2}{3}}}} \right) = 81.3 + \frac{2}{3}.81.3 = 405\)m.
Trả lời: 405.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Biết giới hạn \(\mathop {\lim }\limits_{n \to + \infty } \frac{{ - 3{n^3} + 1}}{{2n + 5}} = a\) và \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{{( - 1)}^n} \cdot {5^n}}}{{{2^n} + {5^{2n}}}} = b\). Khi đó:
a) \(\mathop {\lim }\limits_{n \to + \infty } \left( { - 3{n^2} + \frac{1}{n}} \right) = a\).
b) \(x = b\) là hoành độ giao điểm của đường thẳng \(y = 2x\) với trục hoành.
c) \(\mathop {\lim }\limits_{n \to + \infty } {\left( {\frac{1}{{2024}}} \right)^n} = b\).
d) Cho cấp số cộng \(\left( {{u_n}} \right)\) với công sai \(d = \frac{1}{2}\) và \({u_1} = b\), thì \({u_3} = 2\).
Lời giải
Ta có: \(\mathop {\lim }\limits_{n \to + \infty } \frac{{ - 3{n^3} + 1}}{{2n + 5}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{n\left( { - 3{n^2} + \frac{1}{n}} \right)}}{{n\left( {2 + \frac{5}{n}} \right)}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{ - 3{n^2} + \frac{1}{n}}}{{2 + \frac{5}{n}}} = - \infty \),
do \(\left\{ {\begin{array}{*{20}{l}}{\mathop {\lim }\limits_{n \to + \infty } \left( { - 3{n^2} + \frac{1}{n}} \right) = - \infty }\\{\mathop {\lim }\limits_{n \to + \infty } \left( {2 + \frac{5}{n}} \right) = 2}\end{array}} \right.\)
\(\mathop {\lim }\limits_{n \to + \infty } \frac{{{{( - 1)}^n} \cdot {5^n}}}{{{2^n} + {5^{2n}}}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{{{( - 1)}^n} \cdot {5^n}}}{{{2^n} + {{25}^n}}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{{{25}^n} \cdot {{\left( {\frac{{ - 1}}{5}} \right)}^n}}}{{{{25}^n}\left[ {{{\left( {\frac{2}{{25}}} \right)}^n} + 1} \right]}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{{{\left( {\frac{{ - 1}}{5}} \right)}^n}}}{{{{\left( {\frac{2}{{25}}} \right)}^n} + 1}} = 0\).
a) \(\mathop {\lim }\limits_{n \to + \infty } \frac{{ - 3{n^3} + 1}}{{2n + 5}} = \mathop {\lim }\limits_{n \to + \infty } \left( { - 3{n^2} + \frac{1}{n}} \right) = - \infty \).
b) x = 0 là hoành độ giao điểm của đường thẳng \(y = 2x\) với trục hoành.
c) \(\mathop {\lim }\limits_{n \to + \infty } {\left( {\frac{1}{{2024}}} \right)^n} = b\).
d) u1 = 0; u3 = 0 + 2d = 1.
Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.
Lời giải
A
\(I = \lim \left( {\sqrt {{n^2} + 2n + 3} - n} \right)\)\( = \lim \frac{{2n + 3}}{{\sqrt {{n^2} + 2n + 3} + n}}\)\( = \lim \frac{{2 + \frac{3}{n}}}{{\sqrt {1 + \frac{2}{n} + \frac{3}{{{n^2}}}} + 1}} = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
33 câu trắc nghiệm Toán 11 Kết nối tri thức Bài 29: Công thức cộng xác suất có đáp án
10 Bài tập Biểu diễn góc lượng giác trên đường tròn lượng giác (có lời giải)