Cho hình vuông \[ABCD\], hai đường chéo \[AC\] cắt \[BD\] tại điểm \[O.\] Tính số đo của góc của tam giác \[OAB\] (đơn vị: độ)
Quảng cáo
Trả lời:
Hình vuông \[ABCD\] có hai đường chéo \[AC\] và \[BD\] cắt nhau tại trung điểm \[O\] của mỗi đường nên \[OA = OB.\]
Suy ra tam giác \[OAB\] cân tại \[O.\]
Mà tứ giác \[ABCD\] là hình vuông nên \[AC \bot BD\] hay \[OA \bot OB.\]
Do đó, tam giác \[OAB\] vuông cân tại \[O.\]
Suy ra \(\widehat {AOB} = 90^\circ \) và \(\widehat {OAB} = \widehat {OBA} = 45^\circ \).![Cho hình vuông \[ABCD\], hai đường chéo \[AC\] cắt \[BD\] tại điểm \[O.\] Tính số đo của góc của tam giác \[OAB\] (đơn vị: độ) (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/06/blobid3-1750258718.png)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: D
Đa thức \({x^4} - \frac{1}{2}x{y^3}z\) có bậc là \(5.\)
Câu 2
A. Đơn thức \(A\) và đơn thức \(C\);
B. Đơn thức \(B\) và đơn thức \(C\);
C. Đơn thức \(A\) và đơn thức \(B\);
Lời giải
Đáp án đúng là: C
Ta có: \(A = 4{x^3}y\left( { - 5xy} \right) = - 20{x^4}{y^2}\) nên suy ra \(A\) và \(B\) là hai đơn thức đồng dạng, nhưng không đồng dạng với đơn thức \(C.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
B. \(x\left( {x - 1} \right) = x - {x^2}\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \({\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\);
B. \({\left( { - a - b} \right)^3} = - {a^3} - 3{a^2}b - 3a{b^2} - {b^3}\);
C. \({\left( { - a + b} \right)^3} = - {a^3} - 3{a^2}b + 3a{b^2} + {b^3}\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.