Cho tam giác \[ABC\] cân tại \[A,{\rm{ }}AH\] là đường cao. Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[AB,{\rm{ }}AC\]. Gọi \[D,{\rm{ }}E\] lần lượt là điểm sao cho \[M\] là trung điểm của \[HD,{\rm{ }}N\] là trung điểm của \[HE.\]
a) Chứng minh \[AHBD,{\rm{ }}AHCE,{\rm{ }}BCED\] là những hình chữ nhật.
b) Chứng minh \[BE = CD,\,\,DH = HE.\]
c) Chứng minh giao điểm của \[BE\] và \[CD\] là trung điểm của \[AH\].
Cho tam giác \[ABC\] cân tại \[A,{\rm{ }}AH\] là đường cao. Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[AB,{\rm{ }}AC\]. Gọi \[D,{\rm{ }}E\] lần lượt là điểm sao cho \[M\] là trung điểm của \[HD,{\rm{ }}N\] là trung điểm của \[HE.\]
a) Chứng minh \[AHBD,{\rm{ }}AHCE,{\rm{ }}BCED\] là những hình chữ nhật.
b) Chứng minh \[BE = CD,\,\,DH = HE.\]
c) Chứng minh giao điểm của \[BE\] và \[CD\] là trung điểm của \[AH\].
Quảng cáo
Trả lời:
|
a) Tứ giác \[AHBD\] có \[M\] là trung điểm của \[AB\] và \[HD\] nên là hình bình hành. Do \[AH\] là đường cao của \[\Delta ABC\] nên \[AH \bot BC\], suy ra \[\widehat {AHB} = 90^\circ \]. Hình bình hành \[AHBD\] có \[\widehat {AHB} = 90^\circ \] nên \[AHBD\] là hình chữ nhật. |
![]() |
Tương tự, tứ giác \[AHCE\] có \[N\] là trung điểm của \[AC\] và \[HE\] nên là hình bình hành.
Lại có \[\widehat {AHC} = 90^\circ \] nên \[AHCE\] là hình chữ nhật.
Do \[AHBD,{\rm{ }}AHCE\] là các hình chữ nhật (chứng minh trên).
Suy ra \[\widehat {ADB} = \widehat {DBH} = \widehat {HCE} = \widehat {AEC} = 90^\circ \].
Tứ giác \[BCED\] có \[\widehat {ADB} = \widehat {DBH} = \widehat {HCE} = \widehat {AEC} = 90^\circ \] nên \[BCED\] là hình chữ nhật.
b) Do \[BCED\] là hình chữ nhật (câu a) nên \[CD = BE\].
Do \[AHBD,{\rm{ }}AHCE\] là các hình chữ nhật (câu a) nên \[AB = DH,{\rm{ }}AC = HE\].
Mà \[AB = AC\] (do \[\Delta ABC\] cân tại \[A\]) nên \[DH = HE\].
c) Vì \[ADBH,{\rm{ }}AECH\] là các hình chữ nhật nên \[AD = BH,{\rm{ }}AE = HC,{\rm{ }}AD{\rm{ // }}BC,{\rm{ }}AE{\rm{ // }}BC\].
Mà \[\Delta ABC\] cân tại \[A\] có \[AH\] là đường cao nên đồng thời là đường trung tuyến, do đó \[H\] là trung điểm của \[BC\], suy ra \[BH = HC\].
Từ đó, \[AD = BH = HC = AE\].
Tứ giác \[ADHC\] có: \[AD{\rm{ // }}HC,{\rm{ }}AD = HC\] nên \[ADHC\] là hình bình hành.
Tứ giác \[ABHE\] có: \[AE{\rm{ // }}BH,{\rm{ }}AE = BH\] nên \[ABHE\] là hình bình hành.
Vì \[ADHC\] là hình bình hành nên \[CD\] cắt \[AH\] tại trung điểm của \[AH\].
Vì \[AEHB\] là hình bình hành nên \[BE\] cắt \[AH\] tại trung điểm của \[AH\].
Vậy giao điểm của \[BE\] và \[CD\] là trung điểm của \[AH\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: D
Đa thức \({x^4} - \frac{1}{2}x{y^3}z\) có bậc là \(5.\)
Lời giải

a) Do \(ABCD\) là hình bình hành nên \(AB = CD\) và \(AB\,{\rm{//}}\,CD\)
Lại có \[M,{\rm{ }}N\] lần lượt là trung điểm của \[AB\] và \[CD\] nên \(AM = BM = \frac{1}{2}AB\) và \(DN = CN = \frac{1}{2}CD\)
Do đó \(AM = BM = DN = CN\)
Tứ giác \(DMBN\) có \(BM\,{\rm{//}}\,DN\) (do \(AB\,{\rm{//}}\,CD)\) và \(BM = DN\) nên \(DMBN\) là hình bình hành.
b) Xét tứ giác \(AMND\) có \(AM\,{\rm{//}}\,DN\) (do \(AB\,{\rm{//}}\,CD)\) và \(AM = DN\) nên \(AMND\) là hình bình hành
Lại có \(AB = 2AD\) nên \(AD = \frac{1}{2}AB\). Suy ra \(AM = AD\)
Hình bình hành \(AMND\) có \(AM = AD\) nên \(AMND\) là hình thoi
Suy ra đường chéo \(AN\) là đường phân giác của \(\widehat {DAM}\) hay \(\widehat {DAB}.\)
c) Chứng minh tương tự câu a, ta cũng có tứ giác \(AMCN\) là hình bình hành
Suy ra \(AN\,{\rm{//}}\,CM\) hay \(PN\,{\rm{//}}\,QM\)
Do \(DMBN\) là hình bình hành nên \(DM\,{\rm{//}}\,BN\) hay \(PM\,{\rm{//}}\,QN\)
Tứ giác \[PMQN\] có \(PN\,{\rm{//}}\,QM\)và \(PM\,{\rm{//}}\,QN\) nên \[PMQN\] là hình bình hành
Lại có \(AMND\) là hình thoi nên \(AN \bot DM\) hay \(\widehat {MPN} = 90^\circ \)
Do đó hình bình hành \[PMQN\] là hình chữ nhật
Để \[PMQN\] là hình vuông thì \(PM = PN\,\,\,\left( * \right)\)
Mà \(PM = \frac{1}{2}DM\) và \(PN = \frac{1}{2}AN\) (do \(AMND\) là hình thoi nên \(P\) là trung điểm của hai đường chéo)
Do đó để \(\left( * \right)\) xảy ra thì \(DM = AN\) hay hình thoi \(AMND\) là hình vuông, khi đó \(\widehat {DAM} = 90^\circ \)
Hình bình hành \(ABCD\) có \(\widehat {DAM} = 90^\circ \) thì sẽ trở thành hình chữ nhật.
Vậy để \[PMQN\] là hình vuông thì \(ABCD\) phải là hình chữ nhật.
Thật vậy, khi \(ABCD\) là hình vuông thì hình chữ nhật \[PMQN\] có \(PM = PN\) nên là hình vuông.
Câu 3
B. \(x\left( {x - 1} \right) = x - {x^2}\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \({\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\);
B. \({\left( { - a - b} \right)^3} = - {a^3} - 3{a^2}b - 3a{b^2} - {b^3}\);
C. \({\left( { - a + b} \right)^3} = - {a^3} - 3{a^2}b + 3a{b^2} + {b^3}\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. Đơn thức \(A\) và đơn thức \(C\);
B. Đơn thức \(B\) và đơn thức \(C\);
C. Đơn thức \(A\) và đơn thức \(B\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Cho tam giác \[ABC\] cân tại \[A,{\rm{ }}AH\] là đường cao. Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[AB,{\rm{ }}AC\]. Gọi \[D,{\rm{ }}E\] lần lượt là điểm sao cho \[M\] là trung điểm của \[HD,{\rm{ }}N\] là trung điểm của \[HE.\] a) Chứng minh \[AHBD,{\rm{ }}AHCE,{\rm{ }}BCED\] là những hình chữ nhật. b) Chứng minh \[BE = CD,\,\,DH = HE.\] c) Chứng minh giao điểm của \[BE\] và \[CD\] là trung điểm của \[AH\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/06/blobid4-1750258811.png)