Câu hỏi:

18/06/2025 8

Cho tam giác \[ABC\] cân tại \[A,{\rm{ }}AH\] là đường cao. Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[AB,{\rm{ }}AC\]. Gọi \[D,{\rm{ }}E\] lần lượt là điểm sao cho \[M\] là trung điểm của \[HD,{\rm{ }}N\] là trung điểm của \[HE.\]

a) Chứng minh \[AHBD,{\rm{ }}AHCE,{\rm{ }}BCED\] là những hình chữ nhật.

b) Chứng minh \[BE = CD,\,\,DH = HE.\]

c) Chứng minh giao điểm của \[BE\]\[CD\] là trung điểm của \[AH\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Tứ giác \[AHBD\]\[M\] là trung điểm của \[AB\]\[HD\] nên là hình bình hành.

Do \[AH\] là đường cao của \[\Delta ABC\] nên \[AH \bot BC\], suy ra \[\widehat {AHB} = 90^\circ \].

Hình bình hành \[AHBD\]\[\widehat {AHB} = 90^\circ \] nên \[AHBD\] là hình chữ nhật.

Cho tam giác \[ABC\] cân tại \[A,{\rm{ }}AH\] là đường cao. Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[AB,{\rm{ }}AC\]. Gọi \[D,{\rm{ }}E\] lần lượt là điểm sao cho \[M\] là trung điểm của \[HD,{\rm{ }}N\] là trung điểm của \[HE.\] a) Chứng minh \[AHBD,{\rm{ }}AHCE,{\rm{ }}BCED\] là những hình chữ nhật.  b) Chứng minh \[BE = CD,\,\,DH = HE.\] c) Chứng minh giao điểm của \[BE\] và \[CD\] là trung điểm của \[AH\]. (ảnh 1)

Tương tự, tứ giác \[AHCE\]\[N\] là trung điểm của \[AC\]\[HE\] nên là hình bình hành.

Lại có \[\widehat {AHC} = 90^\circ \] nên \[AHCE\] là hình chữ nhật.

Do \[AHBD,{\rm{ }}AHCE\] là các hình chữ nhật (chứng minh trên).

Suy ra \[\widehat {ADB} = \widehat {DBH} = \widehat {HCE} = \widehat {AEC} = 90^\circ \].

Tứ giác \[BCED\]\[\widehat {ADB} = \widehat {DBH} = \widehat {HCE} = \widehat {AEC} = 90^\circ \] nên \[BCED\] là hình chữ nhật.

b) Do \[BCED\] là hình chữ nhật (câu a) nên \[CD = BE\].

Do \[AHBD,{\rm{ }}AHCE\] là các hình chữ nhật (câu a) nên \[AB = DH,{\rm{ }}AC = HE\].

\[AB = AC\] (do \[\Delta ABC\] cân tại \[A\]) nên \[DH = HE\].

c) Vì \[ADBH,{\rm{ }}AECH\] là các hình chữ nhật nên \[AD = BH,{\rm{ }}AE = HC,{\rm{ }}AD{\rm{ // }}BC,{\rm{ }}AE{\rm{ // }}BC\].

\[\Delta ABC\] cân tại \[A\]\[AH\] là đường cao nên đồng thời là đường trung tuyến, do đó \[H\] là trung điểm của \[BC\], suy ra \[BH = HC\].

Từ đó, \[AD = BH = HC = AE\].

Tứ giác \[ADHC\] có: \[AD{\rm{ // }}HC,{\rm{ }}AD = HC\] nên \[ADHC\] là hình bình hành.

Tứ giác \[ABHE\] có: \[AE{\rm{ // }}BH,{\rm{ }}AE = BH\] nên \[ABHE\] là hình bình hành.

\[ADHC\] là hình bình hành nên \[CD\] cắt \[AH\] tại trung điểm của \[AH\].

\[AEHB\] là hình bình hành nên \[BE\] cắt \[AH\] tại trung điểm của \[AH\].

Vậy giao điểm của \[BE\]\[CD\] là trung điểm của \[AH\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp số: 8.

Ta có \[{x^3} + 6{x^2} + 12x + m = {x^3} + 3 \cdot {x^2} \cdot 2 + 3 \cdot x \cdot {2^2} + m\].

Để biểu thức trên là lập phương của một tổng thì \(m = {2^3} = 8\).

Khi đó, \[{x^3} + 6{x^2} + 12x + 8 = {x^3} + 3 \cdot {x^2} \cdot 2 + 3 \cdot x \cdot {2^2} + {2^3} = {\left( {x + 2} \right)^3}\].

Câu 2

Cho biểu thức \(H = \left( {2x - 3} \right)\left( {x + 7} \right) - 2x\left( {x + 5} \right) - x\). Khẳng định nào sau đây là đúng?

Lời giải

Đáp án đúng là: B

Ta có \(H = \left( {2x - 3} \right)\left( {x + 7} \right) - 2x\left( {x + 5} \right) - x\)

\( = \left( {2{x^2} + 14x - 3x - 21} \right) - \left( {2{x^2} + 10x} \right) - x\)

\( = 2{x^2} + 11x - 21 - 2{x^2} - 10x - x\)

\( = \left( {2{x^2} - 2{x^2}} \right) + \left( {11x - 10x - x} \right) - 21\)\( = - 21 < - 1\).

Vậy \(H < - 1\).

Câu 3

Tứ giác \[ABCD\] trong hình vẽ bên
 Media VietJack

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Trong các biểu thức đại số sau, biểu thức nào là đơn thức?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho các đơn thức \(A = 4{x^3}y\left( { - 5xy} \right)\), \(B = {x^4}{y^2}\), \(C = - 5{x^2}{y^4}\). Các đơn thức nào sau đây đồng dạng với nhau?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Trong các tứ giác sau đây, tứ giác nào không phải là tứ giác lồi?

Trong các tứ giác sau đây, tứ giác nào không phải là tứ giác lồi? (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay