Câu hỏi:

19/08/2025 86 Lưu

Cho hai đa thức \(A = {x^2} - 4xy - 4\)\(B = 2{x^2} - 3xy + {y^2} - 4.\)

Đa thức \(M\) và \(P\) thỏa mãn \(B = A + M\,;\, & P = \left( {x - 3} \right)M - y - \left( {x + y} \right)\left( {xy - 3y} \right).\)

a) Hạng tử tự do của đa thức \(A\) là \( - 4\).

b) Với \(x = 1\,;\,\,y = 0\) thì giá trị của biểu thức \(B\) bằng \( - 2.\)

c) \(M = {x^2} + 7xy + {y^2}.\)

d) Giá trị của biểu thức \(P\) không phụ thuộc vào biến \(y\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:               a) Đúng.    b) Sai.        c) Sai.        d) Đúng.

Đa thức \(A\) có hạng tử tự do là \( - 4\). Do đó ý a) đúng.

Thay \(x = 1\,;\,\,y = 0\) vào biểu thức \(B\), ta có:

\(B = 2 \cdot {1^2} - 3 \cdot 1 \cdot 0 + {0^2} - 4 = 2 - 4 = - 2.\)

Vậy với \(x = 1\,;\,\,y = 0\) thì \(B = - 2\). Do đó ý b) sai.

Ta có: \(B = A + M\)

Suy ra \(M = B - A\)

\( = 2{x^2} - 3xy + {y^2} - 4 - \left( {{x^2} - 4xy - 4} \right)\)

\( = 2{x^2} - 3xy + {y^2} - 4 - {x^2} + 4xy + 4\)

\( = {x^2} + xy + {y^2}.\)

Như vậy \(M = {x^2} + xy + {y^2}.\) Do đó ý c) sai.

Ta có \[P = \left( {x - 3} \right)M - y - \left( {x + y} \right)\left( {xy - 3y} \right)\]

\( = \left( {x - 3} \right)\left( {{x^2} + xy + {y^2}} \right) - \left( {{x^2}y - 3xy + x{y^2} - 3{y^2}} \right)\)

\[ = x\left( {{x^2} + xy + {y^2}} \right) - 3\left( {{x^2} + xy + {y^2}} \right) - {x^2}y + 3xy - x{y^2} + 3{y^2}\]

\[ = {x^3} + {x^2}y + x{y^2} - 3{x^2} - 3xy - 3{y^2} - {x^2}y + 3xy - x{y^2} + 3{y^2}\]

\[ = {x^3} - 3{x^2}\].

Như vậy, giá trị của biểu thức \(P\) không phụ thuộc vào giá trị của biến \(y.\) Do đó ý d) đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ