Câu hỏi:

19/08/2025 40 Lưu

Phân tích các đa thức sau thành nhân tử:

a) \[10{x^2}\left( {2x - y} \right) + 6xy\left( {y - 2x} \right)\].       b) \[\frac{{{x^3}}}{8} - \frac{{{y^3}}}{{27}} + \frac{x}{2} - \frac{y}{3}\].                          c) \({x^3} + 27 + \left( {x + 3} \right)\left( {x - 9} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \[10{x^2}\left( {2x - y} \right) + 6xy\left( {y - 2x} \right)\]

\[ = 10{x^2}\left( {2x - y} \right) - 6xy\left( {2x - y} \right)\]

\[ = \left( {2x - y} \right)\left( {10{x^2} - 6xy} \right)\]

\[ = 2x\left( {2x - y} \right)\left( {5x - 3y} \right).\]

b) \[\frac{{{x^3}}}{8} - \frac{{{y^3}}}{{27}} + \frac{x}{2} - \frac{y}{3}\]

\( = \left( {\frac{{{x^3}}}{8} - \frac{{{y^3}}}{{27}}} \right) + \left( {\frac{x}{2} - \frac{y}{3}} \right)\)

\( = \left[ {{{\left( {\frac{x}{2}} \right)}^3} - {{\left( {\frac{y}{3}} \right)}^3}} \right] + \left( {\frac{x}{2} - \frac{y}{3}} \right)\)

\( = \left( {\frac{x}{2} - \frac{y}{3}} \right)\left[ {{{\left( {\frac{x}{2}} \right)}^2} + \frac{x}{2}.\frac{y}{3} + {{\left( {\frac{y}{3}} \right)}^2}} \right] + \left( {\frac{x}{2} - \frac{y}{3}} \right)\)

\( = \left( {\frac{x}{2} - \frac{y}{3}} \right).\left( {\frac{{{x^2}}}{4} + \frac{{xy}}{6} + \frac{{{y^2}}}{9} + 1} \right)\).

c) \({x^3} + 27 + \left( {x + 3} \right)\left( {x - 9} \right)\)

\( = \left( {x + 3} \right)\left( {{x^2} - 3x + 9} \right) + \left( {x + 3} \right)\left( {x - 9} \right)\)

\( = \left( {x + 3} \right)\left( {{x^2} - 3x + 9 + x - 9} \right)\)

\( = \left( {x + 3} \right)\left( {{x^2} - 2x} \right)\)

\( = \left( {x + 3} \right)x\left( {x - 2} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ